Flinders University Flinders Academic Commons
 

Flinders Academic Commons >
Research Publications >
ERA 2010 >
07 - Biomedical and Clinical Research >
1112 - Oncology and Carcinogenesis >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2328/11143

Title: Genome-Wide Copy Number Analysis in Esophageal Adenocarcinoma Using High-Density Single-Nucleotide Polymorphism Arrays
Authors: Nancarrow, Derek J
Handoko, Herlina Y
Smithers, B M
Gotley, David C
Drew, Paul Anthony
Watson, David Ian
Clouston, Andrew D
Hayward, Nicholas K
Whiteman, David C
Issue Date: 2008
Citation: Nancarrow, D.J., Handoko, H.Y., Smithers, B.M., Gotley, D.C., Drew, P.A., Watson, D.I., Clouston, A., Hayward, N.K., & Whiteman, D.C., 2008. Genome-Wide Copy Number Analysis in Esophageal Adenocarcinoma Using High-Density Single-Nucleotide Polymorphism Arrays. Cancer Research, 68(11), 4163-4172.
Abstract: We applied whole-genome single-nucleotide polymorphism arrays to define a comprehensive genetic profile of 23 esophageal adenocarcinoma (EAC) primary tumor biopsies based on loss of heterozygosity (LOH) and DNA copy number changes. Alterations were common, averaging 97 (range, 23-208) per tumor. LOH and gains averaged 33 (range, 3-83) and 31 (range, 11-73) per tumor, respectively. Copy neutral LOH events averaged 27 (range, 7-57) per EAC. We noted 126 homozygous deletions (HD) across the EAC panel (range, 0-11 in individual tumors). Frequent HDs within FHIT (17 of 23), WWOX (8 of 23), and DMD (6 of 23) suggest a role for common fragile sites or genomic instability in EAC etiology. HDs were also noted for known tumor suppressor genes (TSG), including CDKN2A, CDKN2B, SMAD4, and GALR1, and identified PDE4D and MGC48628 as potentially novel TSGs. All tumors showed LOH for most of chromosome 17p, suggesting that TSGs other than TP53 may be targeted. Frequent gains were noted around MYC (13 of 23), BCL9 (12 of 23), CTAGE1 (14 of 23), and ZNF217 (12 of 23). Thus, we have confirmed previous reports indicating frequent changes to FHIT, CDKN2A, TP53, and MYC in EAC and identified additional genes of interest. Meta-analysis of previous genome-wide EAC studies together with the data presented here highlighted consistent regions of gain on 8q, 18q, and 20q and multiple LOH regions on 4q, 5q, 17p, and 18q, suggesting that more than one gene may be targeted on each of these chromosome arms. The focal gains and deletions documented here are a step toward identifying the key genes involved in EAC development.
URI: http://hdl.handle.net/2328/11143
ISSN: 0008-5472
Appears in Collections:1112 - Oncology and Carcinogenesis
1112 - Oncology and Carcinogenesis

Files in This Item:

File Description SizeFormat
2006008994.pdf427.77 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback