Flinders University Flinders Academic Commons

Flinders Academic Commons >
Research Publications >
ERA 2010 >
01 - Physical, Chemical and Earth Sciences >
0202 - Atomic, Molecular, Nuclear, Particle and Plasma Physics >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2328/8548

Title: Coexistence of 1,3-butadiene conformers in ionisation energies and Dyson orbitals
Authors: Saha, Saumitra
Feng, Wang
Falzon, Chantal
Brunger, Michael James
Issue Date: 2005
Citation: Saha, S., Feng, W., Falzon, C., & Brunger, M.J., 2005. Coexistence of 1,3-butadiene conformers in ionisation energies and Dyson orbitals. Journal of Chemical Physics, 123(12), 124315-1-124315-14.
Abstract: The minimum-energy structures on the torsional potential-energy surface of 1,3-butadiene have been studied quantum mechanically using a range of models including ab initio Hartree-Fock and second-order Møller-Plesset theories, outer valence Green’s function, and density-functional theory with a hybrid functional and statistical average orbital potential model in order to understand the binding-energy ionization energy spectra and orbital cross sections observed by experiments. The unique full geometry optimization process locates the s-trans-1,3-butadiene as the global minimum structure and the s-gauche-1,3-butadiene as the local minimum structure. The latter possesses the dihedral angle of the central carbon bond of 32.81° in agreement with the range of 30°–41° obtained by other theoretical models. Ionization energies in the outer valence space of the conformer pair have been obtained using Hartree-Fock, outer valence Green’s function, and density-functional statistical average orbital potentials models, respectively. The Hartree-Fock results indicate that electron correlation and orbital relaxation effects become more significant towards the inner shell. The spectroscopic pole strengths calculated in the Green’s function model are in the range of 0.85–0.91, suggesting that the independent particle picture is a good approximation in the present study. The binding energies from the density-functional statisticaly averaged orbital potential model are in good agreement with photoelectron spectroscopy, and the simulated Dyson orbitals in momentum space approximated by the density-functional orbitals using plane-wave impulse approximation agree well with those from experimental electron momentum spectroscopy. The coexistence of the conformer pair under the experimental conditions is supported by the approximated experimental binding-energy spectra due to the split conformer orbital energies, as well as the orbital momentum distributions of the mixed conformer pair observed in the orbital cross sections of electron momentum spectroscopy.
URI: http://hdl.handle.net/2328/8548
ISSN: 0021-9606
Appears in Collections:0202 - Atomic, Molecular, Nuclear, Particle and Plasma Physics
0202 - Atomic, Molecular, Nuclear, Particle and Plasma Physics

Files in This Item:

File Description SizeFormat
2005100013.pdf668.02 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback