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ABSTRACT 

This paper addresses the problem of Variable Structure Systems 
(VSS) observer design based on the natural Matrix Second Order 
(MSO) model that represents a large class of linear and nonlinear 
mechanical vibrating structures. In this natural MSO form, the 
symmetric and definiteness properties of the system matrices are 
exploited to search for a suitable Lyapunov function and an 
effective VSS estimation law. The proposed observers can be used 
to robustly estimate oscillations in other degrees-of-freedom (don 
of a multiple-degrees-of-freedom (mdofl linear vibrating system 
by processing measured velocity signals and control inputs from 
one or more dof in the presence of matched uncertainties. The 
method is then extended to cover a class of mdof nonlinear 
vibrating structures with Lipschitz non-linearities. The benefits of 
this approach are that it does not require an initial modal 
transformation, and the observer design problem is solved without 
resorting to the solution of a nonlinear matrix Riccati equation. 

INTRODUCTION 

For a given dynamic system, the problem of observer design is to 
estimate the current states of the system based solely on available 
measured information [l]. Observer design in state-space 
formulation, where the dynamics of the physical plant are 
described by a set of first-order differential equations, provides a 
unified approach for solving a large class of estimation problems 
since most physical systems in practice can be modelled in state- 
space form [2-31. In many applications, the designer simply 
transforms the relevant plant model into state-space form, and then 
uses a wealth of existing analysis and synthesis took for observer 
design. 

One of the key issues in designing state estimators is plant 
uncertainty [4]. In dealing with plant parameter variations and 
disturbance rejection, Variable Structure Systems (VSS) design 
methodology is a well-known solution due to its appealing 
property that renders the estimators invariant to matched 
disturbances [5]. VSS observer design theory for linear uncertain 
systems modelled in state-space has been developed in great 
depth. In general, there are two main approaches for designing 
VSS state estimators for linear systems. One approach, proposed 
by Utkin [6] is to transform the fmt-order state-space model into a 
control canonical form such that the system's output is combined 
with the state-variable vector. The equivalent control principle is 
then used to enforce a sliding mode in the estimation error space. 
In the other approach, initiated by Walcott and Zak [7], asymptotic 
convergence of the estimation error is studied via Lyapunov 
stability theory. Recently, another VSS design method, which 
combines Utkin's and Walcott-Zak's method, was proposed in [8]. 
When uncertainty is present, Utkin's observer gives bounded 
estimation error, whereas Walcott-Zak's observer guarantees 
asymptotic convergence of the error [9]. Although the design idea 
of Walcott-Zak's observer is appealing, it is of limited use in 
practice since it imposes strong structural constraint on the system 
matrices [lo]. The combined approach proposed in [8] works 
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under less conservative structural conditions. However, as stated by 
its authors, one difficulty is to identify when the states have moved 
to the sliding surface in order to correctly introduce the equivalent 
control signal. Introducing the control signal at the wrong time may 
result in incorrect estimation. 

Observer design for nonlinear uncertain systems is still a difficult 
problem despite the high level of attention given to it by many 
researchers. A summary of current available approaches is presented 
in a review paper by Misawa and Hedric [ll],  while more recent 
techniques are reported in [12]. One common approach is to extend 
the classical Luenberger observer and Kalman filter technique for 
use in nonlinear systems. Safonov and Athans [13] considered a 
class of nonlinear systems for which an observer dynamic is 
linearisable, and proposed an extended Kalman filter of constant 
gain. They showed that such estimators have a high degree of 
robustness in terms of gain margin and phase margin when dealing 
with some specific nonlinearities. One way that allows one to find 
an observer with linearisable error dynamics is to apply a canonical 
transformation in state-space [14]. In this canonical transformation 
framework, high gain observers are designed to improve the 
convergence rate of the estimation error. However, unlike the linear 
transformation in linear models, it is difficult to find a suitable 
transformation for a general nonlinear system. Another more 
traditional Lyapunov method is to decompose the state-space model 
into a linear input-free part and a nonlinear state-dependent 
controlled part 115-171. Observation of the linear part is then 
accounted for by using the conventional linear Luenberger observer 
technique, whereas the nonlinear part is treated via its Lipschitz 
constant. Developed in parallel but with a different objective for 
dealing with plant uncertainties, is the VSS observer design 
approach. In comparison with the above approaches, a VSS 
estimator has both a linear constant gain term, and a nonlinear 
switching term which functions much like a high gain and therefore 
has more potential for dealing with disturbances [18]. In this path, 
there are in general two main approaches for dealing with the 
system's nonlinearities and uncertainties. One approach is to 
combine the plant's nonlinear term with the disturbance input and to 
then treat this combination as a disturbance. This reduces the 
nonlinear observation problem to a linear one. The other approach is 
to treat the nonlinear term using its Lipschitz constant. Uncertainties 
and nonlinearities are then handled by a switching surface, the 
design of which usually requires a solution of a nonlinear Riccati 
equation [16], [19]. VSS observer design with measurement noise 
has also bean discussed by many authors, e.g., [18-201. 

However, in dealing with mdof vibrating systems govemed by 
Newton's second law, the modelling equations are obtained naturally 
in the matrix second order (MSO) form [21-221. Converting these 
equations of motion into a first-order state-space model does not 
preserve the advantageous characteristics of the system matrices in 
the original equations, e.g., symmetry, definiteness, and sparsity. 
These current VSS state-space design methods do not exploit the 
special structures of the system matrices in the natural MSO form. 
Furthermore, the system's order in state-space form is doubled and 
the physical importance of each entry in the state vector may not be 
preserved. 
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In recognising the above drawbacks of the state-space design 
framework, one must consider increasing recent concerns about 
solving the control and estimation problems directly in the second- 
order form. Control system design in second-order formulation 
was discussed in [23-261. The Kalman filtering and square-root 
estimation problems were solved in second-order form in [27-281, 
while the issues of controllability and observability for second- 
order models were addressed in [29-3 11. However, in these MSO 
observer designs, robustness against plant uncertainties has not 
been discussed. 

In this paper, a new robust observer design method for a class of 
linear and non-linear vibrating structures is presented. The robust 
estimation problem is solved through the use of VSS observers 
designed directly in the MSO form that takes advantage of the 
symmetric and definiteness properties of the system matrices. 

The proposed VSS observers are capable of estimating the motion 
in one or more dof of an mdof system where no measurement is 
available using velocity signals from other do$ The class of 
mechanical structures under consideration is the so-called "smart 
structures" where sensing mechanism is achieved by means of 
piezoelectric sensors. The reason why velocity information is 
considered is jusW1ed as follows. Firstly, in smart structures 
velocity signals are available via integration of accelerometer 
signals [32]. Secondly, compared to acceleration and displacement 
feedbacks for active control purposes, velocity feedback is shown 
to be the most stable feedback type with respect to the time-delay 
introduced by the zero-order hold logic present in digital-to-analog 
converters [33]. Velocity feedback is also shown to be robust 
against the spill-over problem encountered in controlling flexible 
structures [34]. 

The paper is organised as follows. In Part I, the problem of VSS 
observer design for linear and Lipschitz non-linear vibrating 
systems in second-order formulation using velocity measurement 
is formulated and solved in an ideal noiseless measurement 
setting. The problem of measurements contaminated by noise is 
then addressed in Part II for the nonlinear case. The paper ends 
with two simulation examples for the evaluation of the proposed 
VS observers. 

I. VSS OBSERVER DESIGN IN MSO FORMULATION 
WITH NOISELESS MEASUREMENTS 

1.1 Variable Structure Observer Design For Linear Vibrating 
Systems. 

The problem of VSS estimator design for linear second-order 
models with velocity output is formulated as follows. Consider a 
second-order linear vibrating system described by: 

JIVE + (3 + Kx = Bu + Df, (1) 
\ Y = Q k  

where M, C, K E 9V"' are symmetric, constant matrices; and x, U 
E X" are time-dependent state vector and control force 
respectively. In addition, M is positive definite, C, K are at least 
semi-positive definite, B E Xnm is the control distribution matrix, 
and Q E 3t"" is the output distribution matrix. The vector f(x, U, 
t): %"x%"x%++ 3" represents non-linearities and unknown 
time-varying disturbances, while the disturbance distribution 
matrix D is assumed to be known. This second-order matrix 
equation can be used to model a large class of mechanical, 
electrical, thermal, and fluid structure interaction systems. For 
mdof vibrating systems, this model can describe lumped-parameter 

systems or approximations of distributed structures. Based solely on 
the output information, an observer can hence be designed to 
robustly estimate the state variables in the presence of uncertainty. 
We make the following assumptions. 

Assumption I :  The output measurement matrix Q is symmetric. 
Assumption 2: There exists a matrix R such that: 

Assumption 3: There exists a matrix H, such that: 
c = c + H,Q is positive definite. 

Assumption 4: Let: ~f = [c, 5 ,  ... g.1. Assume that ti is 
bounded with known bound, i.e., there exists a scalar constant p 
such that: 

D = Q R .  (2) 

- 

P > $E l e i / *  (3) 

Remark I .  Assumption I can be easily satisfied if the velocity of 
each dof in system (1) can be measured or derived independently. 
This implies that rank(Q)=q, where q is the total number of the 
generalised co-ordinates that appeared in the measured output. 
Assumption 2 holds when the matching condition is satisfied, i.e., 
one sensor is needed for each unknown disturbance input. 
Assumption 3 implies that the linear part of system (1) is stabiiizable 
by linear velocity feedback. Therefore, these assumptions cover a 
fairly general class of mechanical vibrating systems. A VSS 
observer is proposed as follows. 

Theorem 1. For the system (1) that satisfies Assumptions I, 2, 3 and 
4, the following observer guarantees asymptotic convergence of the 
fmt derivative of the estimation error to the origin: 

&+&+=+se -H,(Y, -Q;) x =Bu, 
where: P is the estimate of x, 

S = - p Q  sign(Q6). e = x - P . 

(4) 

(5 )  

The proof of Theorem 1 is given in the Appendix. 

1.2 Extension to Vibrating Systems with Lipschitz Non-linearity. 

In this section, the above result is extended for a class of non-linear 
vibrating systems with Lipschitz non-linearity. System (1) is 
modified to include a non-linear term as follows: 

i Y=QX. 

We make the following assumptions regarding the system's non- 
linearity. 

Assumption 5. a(x,i,u) is a Lipschitz non-linearity with Lipschitz 
constant y satisfying: 

(6) Mx + Cx + Kx + @(x, x,u) = Bu + Df , 

is positive definite. 

Remark 2. The non-linear quantity is not lumped with the 
disturbance f since the matching condition may no longer hold. The 
square and cubic non-linearity associated with non-linear spring of 
many mechanical structures can be regarded as Lipschitz non-linear, 
provided that displacement range and operating frequency is known. 
Therefore, system (6) represents a fairly large class of non-linear 
vibrating structures. Note that Assumption 6 is more stringent than 
Assumption 3, in the sense that for non-linear systems, the fact that 
the linear part of system (6) is stabilisable by linear velocity 
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feedback may not be sufficient to guarantee asymptotic 
convergence of the estimation error. 

A VSS observer is proposed as follows. 

Theorem 2. For system (6) that satisfies Assumptions 5 & 6, the 
following observer guarantees asymptotic convergence of the first 
derivative of the estimation error to the origin: 
M + ci + KE + *(EAU)+ s, -H,(Y -ai)= BU. 

where Se is designed as in (5). 

The proof of Theorem 2 is given in the Appendix. 

(8) 

II. VARIABLE STRUCTURE OBSERVER DESIGN IN 

MEASUREMENT NOISE 

Consider the case when the velocity input to the observer is 
contaminated by noise. The non-linear system with measurement 
noise is described by: 

MATRIX SECOND-ORDER FORMULATION WITH 

Mx + C i  +Kx + @(x, X,u) = Bu + Df , 
Y =Q(X+ql 

(9) 

where the vector quantity q is the channel noise with unknown 
statistics, but is bounded with known bound: 

lhlI< T. T>O. (10) 

& + ci +E + ~ ( z ,  %,U)- s, - H(Y - Q ~ ) = B ~ ,  (1 1) 

The following observer is proposed: 

where: 

where the scalar constant p satisfies (3) and P is designed such 
that: 

PPQQ is positive definite. E" +- 
E 

Remurk 4. A boundary layer switching scheme similar to (12) is 
employed in [16] and [20] to impose a bound on the estimation 
error for state-space VS observers with noisy measurement. Here 
the boundary layer technique is employed to ensure a non- 
divergence of the estimation error for a class of non-hear plants 
modelled in second-order formulation as follows. 

Theorem 3. For system (9) satisfying Assumptions 5 & 6, 
observer (12) guarantees uniformly ultimate boundedness of the 
first derivative of the estimation error, i.e., there exists a scalar 
constant 6>0  and a Lyapunov function V such that V < 0 
whenever 11, 6 . 
The proof of Theorem 3 is given in the Appendix. 

m. SIMULATION EXAMPLES. 

In this section, performance of the proposed VSS observers is 
evaluated via two simulation examples. 

Example 1. A hfoflinear vibrating system. 
Consider a three-layer instrumentation rack modelled as a 3-dof 
structure as shown in Figure 1. The disturbance forcefis assumed 

4 f ,  

Bfse 
Figure I .  A 3-dof linear vibrating system. 

to act on the base layer, i.e., primary mass mo. fitted with an 
accelerometer. The vibration of the other two layers, i.e., masses ml 
and mz is estimated by the VSS observer (4). The following scenario 
is selected for simulation: 
[w, CO. ko]=[5kg, 50Kgmz, 16OkN/ml, 
[ml, q, $]=[lkg, 10/Kgm2, 106kN/m], and 
[mz, c2, k~]=[OSkg, 10Kgm2, 96kNIml. 

The equation of motion is then: 
Mk+Ck+Kx=Bu+Df, 
Y=QX. 

where: 

1 0 0  60 -10 0 

0 0 0  

K =  -1.06 2.02 -0.96 x ~ O ' ,  B=D=[l  0 Or. [ *': :z 0161 
Assume that the 3-dof system is control-input free, i.e., U = 0. The 
structure has 3 resonant modes at f,=148radls, f,=298radls, and 
h=58hd/s.  Mass mo of the system is excited by a cyclic force of 
the form: 

f(t)=sin(l4&) +sin(29&) + ~ i n ( 5 8 o t ) ( ~ ~ )  

The velocity of mass mo is derived by single integration of the 
accelerometer output. The proposed VSS observer has the form: 

& + C i  +E + pQsign(Qk)+H, (Y, -aL) x =Bu, (14) 

where H, is an identity matrix of dimension 2x2. The observer 
model (14) is assumed to have the following modelling error: the 
mass matrix M and the stiffness matrix K are perturbed within f 5% 
of their corresponding nominal values, while the damping matrix C 
(which is more difficult to model) is perturbed within f 10% of its 
nominal value. In addition, a low frequency sinusoidal noise of 10 
Hz (typical of the vibration present in a vehicle, aircraft, etc.) is 
added to the measured acceleration of the base layer. The added 
noise amplitude is equal to 3% of the measured acceleration. 

Figures 2 and 3 show the respective estimated velocities and 
displacements of layers 1 and 2. The disturbance force acts on mass 
m,, and the estimator is turned on at time t=0.2 sec. As shown in 
these figures, nearly perfect state replications are achieved within 
0.05 sec. The simulations were run using a boundary layer technique 
[4], with switching gain p=10 and a boundary layer thickness of 
0.001. 
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Figure 2. Velocity estimation for linear system with 
multi-sinusoidal excitation and unmatched uncertainty. 
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Figure 3. Displacement estimation for linear system with 
multi-sinusoidal excitation and unmatched uncertainty. 
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Example 2. A 2dof nonlinear coupled oscillator. 

Non-linear oscillations with cubic non-linearity can be found in 
many flexible mechanical structures where stretching and bending 
are significant, or in systems comprised of lumped-masses 
connected together via non-linear springs and/or dampers [35]. 

Figure 4. A 2-dofnon-linear coupled oscillator with cubic 
non-linearity. 

For a non-linear coupled oscillator with cubic non-linearity shown 
in Figure 4, the motion can be described in second-order 
formulation as follows: 

Mji  + CX + Kx + dx) = Df , { Y=QX. 

where: 

The mass matrix is in Kg, the damping matrix is per Kgm’, and the 
stiffness matrix is in N/m. The coupled oscillators have two 
resonances at 6.2rad/s and 17rads. Assume the disturbance input is 
bounded withii 20N (peak-peak), in the frequency range [3rad/s, 
2Orad/s], the Lipschitz constant is estimated to be y=8. The velocity 
of mass m, is derived by integrating the accelerometer signal. 
Velocity and displacement of mass m can be estimated by the 
following observer: 

M?+Ct+KjZ+&i)-pQsign(Qe)-H,(Y -Qt)=O- 
where H, = p = I,. The observer model has a 5% error in the mass 
matrix M and the stiffness matrix K, and a 10% error in the 
damping matrix C. In addition, the accelerometer output from mass 
m, is corrupted by random noise due to measurement imperfection. 
A white noise signal with a peak amplitude of 3% of the nominal 
acceleration is now added to the accelerator output. The system is 
excited by a cyclic force of the form: 

f ( t )  =2.5sin(6.2) + 2sin07t). 

Figure 5 shows the estimated velocity and displacement of mass m. 
As seen from the graph, system state replication is achieved in 0.5 
seconds. The observer is still capable of visually tracking the 
displacement and velocity of mass m in the presence of modelling 
uncertainty and disturbance. The simulation was run using a 
boundary layer technique with switching gain p=l and a boundary 
layer thickness of 0.001. 

Remark 2. For thii nonlinear case study, the estimation problem 
cannot be solved using either the equivalent control approaches 
(Utkin’s observer and the combined Utkinlwalcott-Zak’s observer), 
or Walcott-Zak’s approach. This is because the uncertainty and non- 
linearity terms in these observer design methods, are lumped 
together, such that the lumped uncertainties appear in two different 
measurement channels, i.e., one in the measurement of x and one in 
the measurement of no. Hence, two sensors are required, i.e., one for 
each uncertain channel. In addition, the proposed VSS observer does 
not rely either on the decision time for the injection of the equivalent 
control signal (which is difficult to determine in practice), or on the 
solution of two Lyapunov matrices (as for the Walcott-Zak 
approach) whose computation is impractical without symbolic 
manipulation software. Compared with other nonlinear design 
approaches that consider the Lipschitz constant in the state-space 
framework, the proposed observer does not encounter the nonlinear 
matrix Riccati equations, which is an advantage in dealing with 
vibrating systems that possess a high number of dof, for instance, 
the design of large space structures. 

Remark 3. The proposed observers ensure asymptotic convergence 
of the estimated acceleration and velocity along those dofwhere no 
measurements are available. If the stiffness matrix K is positive- 
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definite, then there are no rigid body modes and therefore no 
translational motions in the system [21]. In this case, estimation of 
the displacement can be simply obtained by single integration of 
the estimated velocity signals. If K is positive semi-defmite, then 
displacement measurement is necessary for the estimation of all  
system state variables. 

SUMMARY 

A new VSS observer design method based on the natural second- 
order form of the modelling equation has been proposed in this 
paper. The objective of the new method is to exploit the 
definiteness and symmetric properties of the system matrices in 
their second-order formulations to search for a suitable Lyapunov 
function and an effective switching law. It is demonstrated that the 
non-linear matrix Riccati equation encountered in most VS 
observer designs via the Lyapunov method in the traditional fmt- 
order state-space form does not appear in the second-order design 
framework. Once the linear part of the dynamic system concemed 
is stabilised by linear velocity feedback, a VS observer can be 
readily synthesised. 

APPENDIX 

1. Proof of Theorem 1. 
From (1) and (4), the dynamics of the estimation error are 
described by: 
M e + E e + K e - S , - D f = O ,  e=X-%. 
Due the definiteness property of the system matrices M and K, a 
simple Lyapunov function is formed as follows: 

V = i ( e r M e  + e'Ke). (A.1) 
2 

Taking the time derivative of this Lyapunov function gives: 

V =L[(e7Me+erMe)+(e7Ke +erKe)] 
2 

2 2 
= 1 [(Me y. e + e7Me]+ i[(Ke Y e  + er Ke] 

=[Me+Ke]re 
= -e7ce + [S. + Df re (A.2) 
= -e'Ee - [pQ sign (Qe)- QRf ]r e 
=-e*Ce-[ps ign(Qe)-Rf]r (Qe)<O.  (A.3) 

Equality (A.2) is due to the symmetric property of M and K, and 
inequality (A.3) follows directly from Assumptions 3 & 4. 
Therefore, V < 0 whenever e # 0. This implies that the manifold 
e = 0 is reached asymptotically. 

2. Proof of Theorem 2. 
From (6) and (8), the dynamics of the estimation error are 
described by: 
M+Ck+Kek[@~,%u)-&%u)] -Se +H,@-Df=O. 

Consider a Lyapunov function as in (A.l), its time derivative is 
then: 

V = L[(e7Mt+eTMt)+ (e'Ke +e'Ke)] 
2 

= [Me+Kere  

= -(Ce + [@(x,x,u)- @(%, i,u)] - Se + H ,Qe - Df p'e 

= -e'[C+ H,Q]'e- [@(x,x,u)-@(%,i,u)re+ [Se + Df ]'e 

= -6' [C + H , Q b - [m(x, i, 1- Q(%, t , u)r e 
-[psig.(Qe)-RfP(Qer 

We have: 
- e r  [C + HvQb - [@(x,x,u)- @(%, -;,")re 

s -e7[c + H , Q ~  + IIa+,x,U)- e(%, i,u)(l 11ell 
S-e7[C+H,Q$+dkll IplI 
S -er(C + H,Q - 71) = -e7Eve. 

Then: 
V S -6'E,e-bsign(Qe)-RfP(Qe)c 0. (-4.4) 
Inequality (A.4) is due Assumptions 3 & 6. Therefore, v c o  
whenever 6 # 0 . "hiis implies that the surface e=o is reached 
asymptotically. 

3. Proof of Theorem 3. 
From (9) and (11). the dynamics of the estimation error are 
described by: 
l@ +CX + Ke+ [Nx, k,u)-@(%. $,U)] + S, + qQk+ RQq -Df = 0. 

Consider the same Lyapunov function as in (A.l), we have: 

V = [PMe +eTMe)+ (erKe+e7Ke)] 
2 

=eT k(C+H,Q)i - (@(x,x,u)-Q(Z, b,u))-S, -H,Qrl+Df] 
= 4T (C + H,Q)i -er (@(x,x,u)-@(Z, t,u))-er[S, + H , Q  - Df] 
5 -+'Eve -e's, +e7 [-H,Qrl+ Df] 
54rE,e-i7S, +lHd, 

where d = IIH ,Q11q + llQllp , and the norm of a ma& is defined as 

IIAIl= ,/=. denotes the set of 

eigenvalues of A ' A . There are two possibilities: 
Case 1. When IIy e, we have: 

V 5-erEye-6TSn +blld 

S - e r E , e - e T  PQp(Y -Qg)+ l l e l l d  
E 

+ IlelP 
S-erEve-e T PPQQ e +  PPQQ t7 

E 

< - e 7  ( E,+-  PPQQ) e + -  I -l+llelld PPQQV 
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Figure 5. Estimation for nonlinear system with multi- 
sinusoidal excitation and unmatched uncertainty. 
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