This is the authors’ version of an article published in the Journal of Pain and Symptom Management. The published version is available by subscription at: http://www.jpsmjournal.com/article/S0885-3924%2812%2900327-2/abstract

doi:10.1016/j.jpainsymman.2012.03.017

© 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

Please note that any alterations made during the publishing process may not appear in this version.

"NOTICE: this is the authors’ version of a work that was accepted for publication in the Journal of Pain and Symptom Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cities. Published Journal Articles (PJAs) Definition: A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publisher activities including copy-editing, formatting and (if relevant) pagination. Policy: Elsevier guarantees each PJA’s authenticity, we work with others (e.g. national libraries) to preserve them for posterity and in perpetuity, and we invest to drive their usage. We strictly apply an absolute guideline regarding their location: every PJA will reside only on a completely controlled site because this is the only way that we as the publisher can guarantee each PJA’s permanence, authenticity and that it is not altered. The continued viability of scholarly journals and their PJAs is also important to the research community. Publishers invest significant time, money and resources to create, maintain and develop both journals’ reputations and the publishing process. The distribution of PJAs is therefore also subject to strict guidelines so that journals’ ability to recoup the investments required to create them are not compromised. An author may use the PJA for personal use and internal institutional use (see above for definitions of these terms). In the interest of safeguarding the correct scientific record, however, Elsevier does not permit the posting of PJAs (Elsevier-provided PDF or HTML files) on any open websites. This is to ensure that the final published version of an article, which has been edited and peer-reviewed according to the publishing standards of an Elsevier journal, is always recognized as such only via the journal itself, whether in print or electronic format. PJAs may not be used for commercial use or for systematic distribution (see above for definitions of these terms).
Title: Gaps in the evidence base of opioids for refractory breathlessness - a future work plan?

Running title: Opioids, breathlessness and research gaps

Authors:

Miriam J Johnson MB ChB (Hons), MD, MRCGP, FRCP. Reader in Palliative Medicine, Hull York Medical School, University of Hull, UK

Amy P Abernethy MD. Associate Professor. Division of Medical Oncology, Department of Medicine, Duke University Medical Centre, Durham, USA. Discipline, Palliative and Supportive Services, Flinders University Australia.

David C Currow BMed, MPH, FRACP. Professor. Discipline, Palliative and Supportive Services, Flinders University.

Author for Correspondence:

M. J. Johnson St. Catherine’s Hospice, Throxenby Lane, Scarborough, N Yorkshire. YO12 5RE. Tel: +44(0)1723 351421 Fax: +44(0)1723 356033 Email: miriam.johnson@hyms.ac.uk

Words: 4,022

Tables: 1

References: 71
Abstract

Breathlessness or “shortness of breath”, medically termed dyspnoea, remains a devastating problem for many people and those who care for them. As a treatment intervention, administration of opioids to relieve breathlessness is an area where progress has been made with the development of an evidence base. As evidence in support of opioids has accumulated, so has our collective understanding about trial methodology, research collaboration and infrastructure that is crucial to generate reliable research results for palliative care clinical settings.

Analysis of achievements to date and what it takes to accomplish these studies provides important insights into knowledge gaps needing further research as well as practical insight into design of pharmacological and non-pharmacological intervention trials in breathlessness and palliative care.

This paper presents current understanding of opioids for treating breathlessness, what is still unknown as priorities for future research and highlights methodological issues for consideration in planned studies.

Words: 147

Key words: palliative care; opiate; dyspnea; research
Introduction

Breathlessness or “shortness of breath”, medically termed dyspnoea, remains a devastating problem for many people and those who care for them. It is frequently dismissed by both those that suffer from it as an inevitable part of growing older or as self-induced, and by clinicians who consider it intractable. Thus, the symptom has been described as “invisible”(1). However the past decade has seen headway regarding understanding of the link between pathophysiology and the genesis of breathlessness, pharmacological treatments, and non-pharmacological interventions.

Several drivers have contributed to breathlessness coming into view in research and clinically. Firstly, chronic obstructive pulmonary disease (COPD) research has increasingly focussed on symptoms and symptom improvement, largely because treatments that lead to improvement in survival are few. Secondly, there has been inequitable access to palliative care services for people with non-malignant disease as highlighted by powerful patient voices describing their experience and the impact of the symptom on the realities of daily living(2-5), as well as comparable symptom burden(6-11). Thirdly, breathlessness has been described as, “the pain of non-malignant disease;” the conceptual similarities between pain and breathlessness, the “total” experience affecting all domains of life, and the pathophysiology of the symptoms and their response to treatment are remarkably similar, with observations supported by neuroimaging and clinical studies (12;13).
People at the end of life want to participate in research that will improve the quality of care (14). As a treatment intervention, administration of opioids to relieve breathlessness is an area where progress has been made. As evidence in support of opioids has accumulated, so has our collective understanding about trial methodology, research collaboration and infrastructure that is crucial to generate reliable research results for palliative care clinical settings (15-17). Methodologically rigorous research is imperative and achievable, so that people, often frail, do not give valuable time to projects that do not meaningfully contribute to the evidence base (18). It is important that the energy spent is not wasted on failed, underpowered or inadequately designed studies that do not provide the answers vitally needed to inform clinical decision-making.

Analysis of achievements to date and what it takes to accomplish these studies provides important insights into evidence gaps needing further research as well as practical insight into design of pharmacological and non-pharmacological intervention trials in breathlessness and palliative care. This paper presents current understanding of opioids for treating breathlessness, highlighting what is still unknown. Sections explicitly divide between the known and areas for exploration, however, it is acknowledged that areas with clear evidence are incomplete and that areas described as “unknown” incorporate unfolding insights. Suggestions of study designs required to address remaining questions are presented.

(Insert Table 1 here; (10;19-26))
What do we know?

1. Efficacy

A Cochrane review concluded that regular morphine, diamorphine and dihydrocodeine improved the sensation of chronic refractory breathlessness by a statistically and clinically significant effect size (19).

An adequately powered placebo controlled study of oral morphine published the following year confirmed this finding, improving morning breathlessness intensity by a statistically and clinically significant 6.6mm and evening breathlessness by 9.5mm on a 0-100mm visual analogue scale (VAS). This was a 13-19% improvement upon the participants’ average baseline refractory dyspnoea measurement of 50mm on a 100mm VAS. Participants had a variety of underlying aetiologies, mainly COPD (20).

Further systematic reviews in cancer patients only, assessing the efficacy of morphine for breathlessness have supported the use of oral and parenteral morphine (27-29).

2. Effective routes of administration (oral, parenteral)

The Cochrane review conclusions were related to parenteral or oral administration of regular low-dose opioids which included morphine, diamorphine or dihydrocodeine but stated there was no evidence to support currently the use of nebulised opioids although studies were short term and under powered (19). As such, an adequately designed and executed trial of nebulised opioids is required before a benefit from nebulised opioids can be excluded.
Since then, there have been several more studies of nebulised opioids (fentanyl, morphine and hydromorphone), (17;30-34) the results of which follow a pattern according to study design. Randomised studies that measured dyspnoea (two with morphine, and one with hydromorphone) had negative findings (30;33;34), but the small observational cohort of nebulised fentanyl (n-=35) showed benefit (31), as did the single case report (32). Unfortunately, the placebo controlled randomised trial of fentanyl failed to recruit (17).

Likewise, case series of intranasal and transmucosal routes of fentanyl administration have shown benefit (35-37). Given that the genesis of breathlessness is multi-factorial, it is not surprising that benefit seen in uncontrolled studies may reduce or disappear when trials are blinded and randomised, for example, using “before and after” comparisons can exaggerate treatment effects by 61% compared with controlled studies(38).

3. Safety and tolerability

In a two stage dose –titration (83 participants: 54% COPD; 29% primary lung cancer; 12% interstitial lung disease; 5% other causes), and pharmacovigilance (52 participants) open labelled study, opioid-naïve people with multi-aetiology dyspnoea were titrated daily from 10 to 30mg daily sustained-relief morphine according to clinical benefit and study algorithm (10). Patients were treated with weekly dose increments until effect and then long term on the dose (if any) resulting in clinical benefit. This study provided more than 30 patient-years of data. On an intention-to-treat basis, the response rate at the end of the dose-titration period was 52/83 (63%), giving a number needed to treat of 1.6; taking into account unacceptable side effects, the number needed to harm was 4.6. Of those who responded, 93% had done so by a dose of 20mg daily. In the pharmacovigilance phase, 14/52 stopped morphine due to unacceptable side-effects; constipation being the most common reason (6 people). There were
no episodes of respiratory depression or hospital admissions due to sustained-release morphine in either phase.

4. Minimal change in efficacy required for patient-defined benefit (minimal clinically important difference)

Using calculated mathematical models based upon people with chronic breathlessness due to COPD, Ries concludes that a minimally clinically important difference (MCID) is a change of 1 point in the Borg scale and 10 – 20mm on a VAS (23). A consensus statement confirms this recommendation and expands it to cover all aetiologies, indicating that a 1 point improvement in the Borg score and 10mm on a VAS is a MCID (22). Recently, emerging data from a population of heart failure patients with chronic breathlessness has suggested that between 0.5 and 2.0 improvement in a 0-10 numerical rating scale (NRS) is meaningful, equating to a one point change on the global impression of change in breathlessness scale (unpublished data calculation from Oxberry S. Thesis: Opioids in Heart Failure. University of York 2010). MCID in chronic breathlessness is markedly different to the MCID in acute breathlessness. Data demonstrate that for acute breathlessness an improvement of 2 on a 0-10 NRS is the MCID and probably reflects the qualitatively different experiences of both situations (39;40).

Therefore, morphine’s impact of approximately 1 on a NRS (10mm on a VAS) or more is consistent with calculated and patient-defined MCID for chronic breathlessness (20;21). Even seemingly small changes identified in the efficacy studies lead to clinically important improvement. However, recommendations continue to highlight that patient-rated variables should be included in studies to confirm patient-defined clinical impact and how it correlates
with differences in dyspnoea rating scores (e.g., patient reported global benefit of the intervention, patient preference for the intervention).

5. Definition of a central mechanism of action

The mechanisms whereby opioids help the sensation of breathlessness are not fully clarified, but there is progress in our understanding. Opioid receptors and endogenous opioids are found throughout the cardiorespiratory system and endogenous opioid release forms part of the complex neuroendocrine response in heart failure, a syndrome characterised by chronic and acute-on-chronic dyspnoea (41-43). A recent RCT in COPD patients showed worse dyspnoea after treadmill exercise in those given naloxone (a centrally and peripherally acting opioid antagonist) compared with placebo confirming that endogenous opioids mediate the sensation of breathlessness (24). Animal and human studies suggest mechanisms whereby opioids may ease dyspnoea. Sympathetic stimulation and endogenous opioid production appear to be interlinked in a complex manner involving both central and peripheral mechanisms. Opioid receptor agonism may inhibit sympathetic drive by reducing intracellular cAMP, in the periphery, where this mechanism has been demonstrated in the myocardium (44;45). Down-regulation of peripheral chemoceptors may also reduce ventilatory drive and thus reduce sympathetic outflow (46).

In addition to these mechanisms, neuro-imaging study groups are starting to apply the knowledge gained from work with functional magnetic resonance imaging (fMRI) in pain to breathlessness (13;25;47-51). The integrated cortical and sub-cortical network found to be involved in the perception of breathlessness induced in normal volunteers is strikingly similar to that involved in the perception of pain, especially within the context of the role of emotion and higher order cognitive functioning. It has been more challenging to study the functional
neuroimaging of people with chronic breathlessness due to pathology because it is more
difficult for them to tolerate fMRI. However there is one study of people with chronic asthma
that demonstrates some evidence of down regulation of the anterior insula, the area thought to
be integrally related to perception of “unpleasantness” (50). This is in keeping with the
smaller MCID for chronic breathlessness than for acute breathlessness, although this study
did not apply the same resistive load to patients and normal controls.

In initial work with opioids and fMRI in induced breathlessness in normal volunteers using
breath holding as a model of inducing “urge to breathe” by Pattinson and colleagues has
shown that ramifentanil is able to decrease localised breathhold related “urge to breathe”
activity in the left anterior insula and operculum in conjunction with a corresponding
dramatic reduction in the participant’s awareness of respiration (52). Motor and sensory
activities, however were largely unaffected by ramifentanil.

What is there to find out?

1. Is there a class effect from opioids? Do mu opioid agonists deliver the most benefit?

In general, open label observational studies of opioids other than morphine are positive, but
most of them are very small studies or case series only. The few randomised trials fail to
confirm benefit and well designed, adequately powered studies are needed in order to answer
this question.
Oxycodone is an interesting opioid in that it has kappa as well as mu activity. Whether this translates into additional benefit for people with dyspnoea, in terms of efficacy or safety, is unknown. There is a double-blind, parallel arm trial randomising participants with refractory breathlessness to receive morphine, oxycodone or placebo to steady state open in Australia (ACTRN12609000806268), but more comparative research is needed. In people with New York Heart Association Class III/IV heart failure, an adequately powered comparative crossover study with oxycodone, morphine and placebo failed to demonstrate any superiority of any intervention of any arm, although all improved breathlessness including placebo (ISRCTN85268059)(53).

2. Can we define particular subgroups of people for whom opioids are more beneficial?

It is clear that not all patients benefit from opioids for chronic breathlessness. The correlation between baseline dyspnoea severity and response to opioids was assessed in the study of 20mg daily modified release morphine for refractory breathlessness (26). This was an exploratory study that was not powered to define predictors of response, but younger age, better performance status and cardiovascular pathology were cited as worthy of further prospective evaluation in a larger trial. The “dypnoea target”, a model of opioid responsiveness, has been suggested as a conceptual approach in the selection of patients for opioid treatment as part of their breathlessness management, in an attempt to incorporate factors that may influence opioid responsiveness in an individual, but this has yet to be tested (54). Clearly more work is needed to identify patients most likely to benefit from opioids, with the lowest likelihood for toxicity.
The majority of people in the studies described above had breathlessness due to chronic obstructive pulmonary disease or cancer; very few participants had cardiac disease. There is one reported pilot study of repeat dose morphine in heart failure patients that found a statistically significant improvement in breathlessness in the morphine arm (21). Although the powered study in CHF(53) did not show any advantage of opioids over placebo at four days, an open label, patient choice three month extension showed improvement in breathlessness in those who chose to continue opioids compared with those who did not. Indeed, those who did not had a slight deterioration in breathlessness severity.

3. What is the true role of opioids in the relief of breathlessness in clinical practice?

Apart from the dose ranging study, the majority of data tells us about efficacy rather than the effectiveness in daily practice. The lack of effectiveness data to support the widespread implementation of opioids into primary, secondary and tertiary clinical practice is perhaps the most dangerous challenge to this body of science, particularly in palliative care and oncology, specialties renowned for its early adopters (55). There is an urgent need for phase IV pharmacovigilance comparative studies to give us vital information, not only about the differential effectiveness of various opioids, but also their side effects and impact of daily living when translated into the “real world” of people outside carefully controlled eligibility criteria.

4. What is the role of other routes of administration such as intranasal, buccal, transdermal or nebulised?
There are no studies randomising participants to receive sustained-release opioids versus immediately available preparations. We do not know whether transdermal preparations are helpful for breathlessness. We do not know whether patients with stable, predictable breathlessness would gain more benefit from sustained-release preparations, and those with episodic (which could be predictable or unpredictable) breathlessness gain more benefit from newer delivery systems for rapid-onset such as transmucosal, buccal, nasal or inhaled opioids.

5. What other opioid mechanisms help to ameliorate breathlessness?

As discussed above, the exploration of the mechanisms involved in opioid induced benefit in terms of both central and peripheral mechanisms is only just beginning. As patients with pathological breathlessness may tolerate fMRI poorly, different methods of investigating brain activity could be explored, such as magnetoencephalography which does not require the patient to lie flat. Peripheral mechanisms involving the interplay between the sympathetic nervous system and peripheral muscles would be another interesting target for researchers.

6. Are there agents that synergistically enhance the efficacy of opioids?

Evidence regarding combined medicinal and pharmacological plus non-pharmacological interventions that incorporate opioids is generally lacking. There is one study which shows that morphine and midazolam give additional benefit when administered together in dyspnoic patients in the dying phase (last hours of days of life), compared with giving midazolam alone (56). Although morphine alone gave more relief than midazolam alone, the combination was still the more efficacious option. However, before putting this evidence into
wider practice, readers should take caution. The study population was very late in their illness and the results are likely more applicable in the last few hours or days of life; for example, approximately 20% of those randomised died within 24 hours and baseline levels of breathlessness were very severe (>7 on the Borg scale, where 5 represents severe). Improvements with study intervention were dramatic with reductions in Borg scores down to 2-3 within 24 – 48 hours. This study therefore highlights another issue in breathlessness research - the participant population needs to be carefully defined, the outcome measure appropriately chosen, and the findings only applied to comparable populations.

A small study (n=7 people with COPD) indicated greater improvement in exercise tolerance with a combination of morphine and promethazine than placebo or morphine alone, but there was no change in Borg measures of breathlessness(57).

7. What are the barriers and facilitators to opioid prescribing in breathlessness?

Compared with the “barriers” work completed in opioids and pain, there is little in breathlessness. There are some data published as conference abstracts (58;59). Physicians are frequently cautious about prescribing opioids in people with chronic respiratory disease unless they are imminently dying, for fear of respiratory depression or addiction. Contact with palliative care clinicians appears to help confidence with opioid prescribing (58). Respiratory therapists in one centre found this attitude frustrating as they perceived opioids to be a potentially beneficial intervention. These physician attitudes are not supported by the evidence above but appear to be strongly held in this small selected survey (58). Interestingly, one qualitative study reviewed the impact of the Shipman murders* on general practitioner prescribing of opioids for COPD in England; the highly publicised murders increased
clinician anxiety about prescribing opioids despite evidence to the contrary, and palliative administration decreased (60).

Patient barriers are different from physician barriers. In an interview study of men with heart failure from one area of the United Kingdom, polypharmacy and opioid fears would not prevent them trying opioids provided they had trust in the prescribing clinician; confidence in their doctor was a strong feature (61). One patient interviewed commented that his doctor thought that prescribing morphine was dangerous. A strong theme from this study suggested that this group of patients did not associate the use of opioids exclusively with death and dying, in contrast with previous findings in patients with cancer. A possible explanation is that many had had experience of being given morphine very effectively during an acute, frightening, painful and life threatening event such as a myocardial infarction, and seemed to have a much more positive view of it as something to be used if recommended by their clinician. Also, several respondents in the study described experience of beneficial use of morphine for those they knew for cancer pain, where it resulted in an improved quality of life.

*Harold Shipman was a General Practitioner in Northwest England who was sentenced to life imprisonment for the murder of 15 of his patients and of one count of forging a will. The subsequent Shipman Inquiry concluded that he killed approximately 250 patients over 27 years with lethal doses of diamorphine. Concerns were raised in the Inquiry and trial about the regulation of GPs in the UK, particularly in relation to the prescription of opioids.

Recommendations for further research (questions and design):
Much of what we have learnt about design from experience with opioid studies can be
generalised to other dyspnoea and palliative care research.

Baseline/definitional issues

1. Description of the study population should be routine so that patient profile and
 setting can be interpreted easily and judgements made with regard to generalisability
 and applicability of results. Inclusion of ethnicity and socioeconomic status in
 baseline demographic data collection would be two very helpful measures.

2. Baseline. Definitions of dyspnoea, and terms such as “refractory” should be agreed.
 The operational definition of “refractory dyspnoea” has been defined as that which
 persists even when all identified reversible causes have been treated. This definition
 has now been published in several trials, chapters, and opinion pieces and we
 therefore recommend that this be the one used (20;62-64); importantly when using
 the same definition in different studies similar patient populations were enrolled with
 respect to intensity of breathlessness, chronicity, and aetiology even in different
 countries. Consistency across trials ensures that studies can be combined and
 compared.

3. The concept of “total dyspnoea” appears to be a useful one and is gaining credence in
 both clinical and research communities (12;65). It also seems to have a physiological
 basis in the perception of breathlessness. This, coupled with the other concept of a
 “dyspnoea target”, which also recognises fear and anxiety as major drivers of
 breathlessness in subgroups of people, underlines the importance of designing studies
 with mixed methods. Recent systematic reviews on outcome measurement of
 breathlessness and a consensus statement both of which call for unidimensional,
multidimensional and qualitative assessment of the symptom reflect this stance (66-69).

Design issues

1. Clarification of the primary endpoint has been a key factor. Understanding that our main attention should lie with the sensation of breathlessness has resulted in adequately powered studies (20;53). An appreciation of the subtleties of measurement of the sensation of breathlessness has also been important; there appears to be a diurnal variation in the perception of intensity, so assessment of “present” breathlessness in daily measurement needs to be measured twice daily (e.g., on awakening and before going to bed) (20). We have also improved our understanding in how best to use unidimensional measures such as the numerical rating scale, the Borg and the visual analogue scale, choosing with much more care which tool to use for which population, and in what situation (66-69). Measurement of function is still an important but secondary endpoint.

2. Attrition in palliative care studies unrelated to the intervention is a predictable issue. Methods for accounting for drop outs unrelated to the intervention and missing data should be planned for in sample size calculation (some studies will experience at least 40% drop out by 4 weeks which should be planned into the sample size) (63), study design, and statistical analysis plans, especially for those involving longitudinal analyses.

3. Meticulous adverse event monitoring is mandatory. There is a tendency in palliative care to make the assumption that it is not possible to make matters any worse by
“trying something out” (18). This is an erroneous assumption, and any clinical trial should come under the same scrutiny with regard to adverse events as any other (18).

4. The sensation of breathlessness is driven by many factors, therefore randomisation is needed to minimise such bias in efficacy studies.

5. Large pharmacovigilance studies and well designed observational consecutive cohorts within which we have meaningful prospectively collected data to draw stratified conclusions are invaluable for assessing many of the questions posed earlier in this manuscript. For example, subgroups hypothesised to be most likely to respond can be assessed using multivariate analyses and the multiple inputs for the “dyspnoea target” could be addressed. Sufficient recruitment to such cohort studies requires multi-centre collaboration.

6. Well designed qualitative studies to understand clinical decision making, barriers and facilitators regarding the use of opioids for breathlessness, and user experience are needed to help inform education and dissemination of research findings, as knowledge of the evidence base alone is insufficient to lead to change in practice (70).

Study infrastructure

1. Recruitment methods remain an ongoing challenge, but methods outlined by Abernethy and others have proved their worth in successful, multinational interventional studies in palliative care populations (20;62).

2. The establishment of collaborative relationship can access pooled resources, and provide an important way forward (15;16). Six ongoing rigorous phase III drug trials in several Australian palliative care centres are recruiting well, demonstrating that well-funded, well-structured collaborative studies can be completed, even in frail palliative care populations, if clinical centres are given the research infrastructure
resources to contribute to large projects. A main key to success is to keep the project as simple and achievable as possible, with a reduction in extraneous variables (71).

Research questions

1. The MCID in chronic breathlessness calculated from subjective patient data is important, and should be one of the first aspects of the research agenda in order to give patient-related relevance to research outputs.

2. There is a need to define what is meant by “episodic breathlessness related and unrelated to exertion” as this appears to be a particularly challenging clinical situation and clear definitions are needed as a first step to study design.

3. Rapid onset opioids are an attractive therapeutic option especially for acute crises, although careful delivery will be required, especially in the opioid naïve person.

4. Synergism with other approaches such as opioids with or without oxygen, benzodiazepines, selective serotonin reuptake inhibitors and related drugs, should be explored. Similarly, opioids in conjunction with the vast array of non pharmacological approaches is a whole area ripe for exploration, especially using the “total dyspnoea” model.

5. We have barely scratched the surface of understanding how opioids work in helping the sensation of breathlessness. One of the barriers to further exploration using fMRI is that people with breathlessness due to advanced illness find it difficult to tolerate MRI scanning. Novel methods are being explored to address this issue.

Conclusions
We have achieved much in our understanding of the use of opioids for the relief of chronic breathlessness. Strands are coming together from work done including expanding science in neuroimaging, pain, heart failure, COPD and cancer. However, there is a clear warning to heed; in order to move forwards to answer remaining questions, we need to work together in collaborative groups. Those groups need to be big enough to recruit sufficient numbers of study participants and should include people with a range of skills including physiologists, neuroimagers, trial methodologists and qualitative researchers. Let us put our energy, and the energy of the patients who want to help us into studies that will truly further our understanding in this important area.

Disclosures and Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

The Authors declare that they have no financial or personal relationships with individuals, organizations or companies that might be perceived to bias the work.
Reference List

(18) Currow DC. Why don't we do more rigorous clinical research so that we can stop experimenting on patients? J Palliat Med 2010 Jun;13(6):636-7.

(23) Ries AL. Minimally clinically important difference for the UCSD Shortness of Breath Questionnaire, Borg Scale, and Visual Analog Scale. COPD 2005 Mar;2(1):105-10.

(55) Currow DC, Davis C. How quick are palliative care doctors to adopt new evidence. Eur J Pall Care 2010;17:5.

(57) Light RW, Stansbury DW, Webster JS. Effect of 30 mg of morphine alone or with promethazine or prochlorperazine on the exercise capacity of patients with COPD 5. Chest 1996 Apr;109(4):975-81.

(62) Abernethy AP, McDonald CF, Frith PA, Clark K, Herndon JE, Marcello J, et al. Effect of palliative oxygen versus room air in relief of breathlessness in patients with

(70) Getting evidence into practice. Effective Health Care 5[1], 1-16. 1999. Ref Type: Pamphlet

(71) Currow DC, Agar MR, Abernethy AP. Tackling the challenges of clinical trials in palliative care. Pharmaceutical Med 2010;In press. Accepted for publication 18 October 2010.