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ABSTRACT 

Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the 

elderly with limited therapeutic options. Here, we report on a study of >12 million variants 

including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 

patients and 17,832 controls, we identify 52 independently associated common and rare 

variants (P < 5x10-8) distributed across 34 loci. While wet and dry AMD subtypes exhibit 

predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 

(difference-P = 4.1x10-10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and 

TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our 

results support the hypothesis that rare coding variants can pinpoint causal genes within 

known genetic loci and illustrate that applying the approach systematically to detect new loci 

requires extremely large sample sizes. 
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Advanced age-related macular degeneration (AMD) is an ocular neurodegenerative disease 

and the leading cause of vision loss among the elderly with prevalence estimated at 5% for 

those above 75 years of age1,2. The disease is characterized by reduced function of the 

retinal pigment epithelium (RPE) and loss of photoreceptors in the macula. Advanced AMD is 

classified as wet (choroidal neovascularization, CNV, when accompanied by angiogenesis) 

or dry AMD (geographic atrophy, GA, when angiogenesis is absent). These advanced stages 

of disease are typically preceded by a gradual accumulation of acellular debris in the form of 

drusen and by pigmentary abnormalities in the macula3. Advanced AMD is estimated to 

affect 9.6 million patients currently worldwide and early AMD stages more than 154.6 

million4. At present, our understanding of disease biology and therapies remains limited5.  

Genetic variants, whether associated with small or large changes in disease risk, can 

help uncover disease mechanisms and provide entry points into therapy. Analysis of 

common variation have uncovered numerous risk loci for a multitude of complex diseases 

(see Web Resources) including 21 loci for AMD6-12. However, for most disease loci, 

translation into biological insights remains a major challenge, since the functional 

consequences of associated common variants are typically subtle13 and therefore open to 

inconsistent interpretations.  

With advances in sequencing technology, it is expected that genetic analyses will 

gradually extend to rare variation, which often has more obvious functional consequences14,15 

and thus can accelerate translation of genetic findings into biological understanding14,16. For 

example, identifying multiple disease-associated coding variants in the same gene would 

provide strong evidence that disrupting gene function leads to disease17 particularly when 

these are naturally occurring knock-out alleles. Studies that implicate specific rare variants in 

complex diseases are few and  limited in their generalizability, as they either rely on special 

populations8,18,19, on targeted examinations of a few genes7,9-11,20,21, or on genome-wide 

assessments of relatively modest numbers of individuals22-25. In contrast, systematic 

analyses of common variation are now available in hundreds of thousands of phenotyped 

individuals26,27. Thus, there remains considerable uncertainty about the relative role of rare 

variants in complex disease and the best strategies to identify highly informative rare 

variants. Importantly, the optimal sample sizes and study designs for such studies remain 

poorly understood16. 

Here, we set out to systematically examine common and rare variation of AMD in the 

International AMD Genomics Consortium (IAMDGC) incorporating both a genome-wide 

approach as well as enrichment from a targeted approach. The preceding largest study of 

AMD examined ~2.4 million variants including ~18,000 imputed or genotyped protein-altering 

variants using meta-analysis6. Customizing a chip for de novo centralized genotyping, we 

analyze >12 million variants including 163,714 directly typed protein-altering variants in 
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43,566 unrelated subjects of predominantly European ancestry. Our study thus constitutes a 

detailed simultaneous assessment of common and rare variation in a complex disease and a 

large sample, setting expectations for other well-powered studies combining common and 

rare variant information.  

 

RESULTS 

The study data and genomic heritability 

We gathered advanced AMD cases with GA and/or CNV, intermediate AMD cases, and 

control subjects across 26 studies (Supplementary Table 1). While recruitment and 

ascertainment strategies varied (Supplementary Table 2), DNA samples were collected and 

genotyped centrally. Making maximal use of genotyping technologies, we utilized a chip with 

(i) the usual genome-wide variant content, (ii) exome content comparable to the exome chip 

(adding protein-altering variants from across all exons), and a specific customization to add 

(iii) protein-altering variants detected by our prior sequencing of known AMD loci (see 

Methods) and (iv) previously observed and predicted variation in TIMP3 and ABCA4, two 

genes implicated in monogenic retinal dystrophies. After quality control, we retained 439,350 

directly typed variants including a grid of 264,655 common variants (frequency among 

controls >1%) distributed across autosomes, sex chromosomes, and mitochondria, primarily 

(93%) non-coding, and 163,714 directly genotyped protein-altering variants (including 8,290 

from known AMD loci), mostly rare (88% with frequency among controls ≤1%). Imputation to 

the 1000 Genomes reference panel enabled examining a total of 12,023,830 variants 

(Supplementary Table 3A). Our final data set included a total of 43,566 subjects consisting 

of 16,144 advanced AMD patients and 17,832 control subjects of European ancestry for our 

primary analysis, as well as 6,657 Europeans with intermediate disease and 2,933 subjects 

with Non-European ancestry (Supplementary Table 3B, Supplementary Figure 1).  

Altogether, our genotyped markers accounted for 46.7%28 of variability in advanced 

AMD risk in the European ancestry subjects (95% confidence interval [CI] 44.5% to 48.8%). 

Regarding AMD subtypes, estimates for CNV (h2 = 44.3%, CI 42.2% to 46.5%) and GA (h2 = 

52.3%, CI 47.2% to 57.4%) were similar; a bivariate analysis29 showed a high genetic 

correlation of 0.85 (CI 0.78 to 0.92) between disease subtypes.  

 

Thirty-Four Susceptibility Loci for AMD 

We first conducted a genome-wide single variant analysis of the >12 million genotyped or 

imputed variants (applying genomic control correction, =1.13) comparing the 16,144 

advanced AMD patients and 17,832 control subjects of European ancestry (full results 

online; see Web resources). We obtained >7000 genome-wide significant variants (P ≤ 

5x10-8, Supplementary Figure 2). To identify independently associated variants, we 
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adopted sequential forward selection (Supplementary Figure 3), resulting in 52 

independently associated variants that reach genome-wide significance (Supplementary 

Table 4, Supplementary File 1). These are distributed across 34 locus regions (Figure 1A), 

each extending across the identified and correlated variants, r²≥0.5, ±500kb (Supplementary 

Table 5). While each of these 52 variants points to a genomic element contributing to AMD 

biology, variants in the 34 different loci reside relatively far from each other and likely 

contribute to disease by regulating or modifying the function of different genes. The 34 loci 

include 16 loci that reached genome-wide significance for the first time (novel loci, Table 1) 

and include genes with compelling biology like extra-cellular matrix genes (COL4A3, MMP19, 

MMP9), an ABC transporter linked to HDL cholesterol (ABCA1), and a key activator in 

immune function (PILRB). Also included are 18 of the 21 AMD loci that reached genome-

wide significance previously6,9 (known loci, Table 1),  between-study heterogeneity was low, 

particularly for the new loci (Supplementary Note 1).  

Most associated variants are common (45 out of 52) with fully conditioned odds ratios 

(OR) from 1.1 to 2.9 (Figure 1B, Supplementary Table 4) with two interacting variants 

(Supplementary Note 2). We also observed seven rare variants with frequencies between 

0.01% and 1% and ORs between 1.5 and 47.6 (Figure 1B, Supplementary Table 4). All of 

these variants were also rare in Non-European ancestries (Supplementary Table 6, 

extended association results on Non-European in Supplementary File 2). All seven rare 

variants are located in/near complement genes: four non-synonymous (CFH:R1210C, 

CFI:G119R, C9:P167S, C3:K155Q) and previously found in targeted analyses of 

complement genes7-11; three others (CFH: rs148553336, rs191281603, rs35292876) 

described here for the first time, including two with the rare allele decreasing disease risk by 

~2.5 to ~3.3-fold and one increasing risk 1.6 fold. To ensure validity of our results, we verified 

associations of lead variants in sensitivity analyses that relied on alternate association tests, 

adjusted for age, gender, or ten ancestry principal components, or were restricted to 

population-based controls or controls ≥ 50 years of age (data not shown). Altogether, our 

genome-wide single variant analysis nearly doubled the number of AMD loci and has 

identified several novel rare variants in CFH. 

 

Prioritizing variants within 52 association signals 

It is often challenging to translate common variant association signals into mechanistic 

understanding of biology; two key challenges are (i) a large number of variants with similar 

signals because of linkage disequilibrium and (ii) their often subtle functional consequences. 

Without narrowing down the lists of candidate variants, follow-up functional experiments are 

complicated. In our large data set, we were able to prioritize among nearby variants: we 

computed each variant’s ability to explain the observed signal and derived, for each of the 52 
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signals, the smallest set of variants that included the causal variant with 95% probability 30,31. 

The 52 credible sets each included from 1 to >100 variants (total of 1,345 variants, 

Supplementary File 3). For 27 out of the 52 sets, the sets were small with ≤10 variants (19 

signals with ≤5 variants, Supplementary Table 7); seven sets included only one variant -- – 

demonstrating the potential for fine-mapping association signals when dense genotype data 

is systematically analyzed in large samples. Among the 205 variants with >5% probability of 

causing the statistical signal, we observe 11 protein-altering (all non-synonymous) variants 

(versus 2 expected assuming 1% protein-altering variants overall, P for enrichment  

= 8.7x10-6, Supplementary Table 8). These variants provide a focused starting point for 

future functional analyses, although we recognize that the analysis has limitations [for 

example, when causal variants are not genotyped nor well-imputed, or when the signal is 

due to a combination of multiple variants, see Supplementary Figure 4 for a counter 

example]. We also note that other variants in each locus (potentially including variants in 

linkage disequilibrium with lead variants and/or other variants nearby) could also contribute 

to disease risk.  

 

Rare Variant Association Signals  

Analysis of rare variants that potentially alter peptide sequences (non-synonymous), truncate 

proteins (premature stop), or affect RNA splicing (splice site) can help to identify causal 

mechanisms – particularly when multiple such associated variants reside in the same 

gene16,32. We examined the cumulative effect of these protein-altering variants with a 

frequency ≤1% in each of our ancestry groups. Genome-wide, no signal was detected with P 

≤ 0.05/17,044 = 2.9x10-6 outside the 34 AMD loci (Figure 1C). Within the 34 loci, we found 

14 genes with significant disease burden (P < 0.05/703 genes = 7.1x10-5, Supplementary 

Table 9). To eliminate settings where a rare variant burden finding is a linkage disequilibrium 

shadow of a nearby stronger common variant, we evaluated each burden signal upon its 

independence from already identified variants in the locus (from Supplementary Table 4). 

Four of the 14 genes preserved a significant (P < 0.05/703 = 7.1x10-5) rare variant burden 

when conditioning on already identified variants in the locus (CFH, CFI, TIMP3, SLC16A8; 

conditioned P = 1.2x10-6, 1.0x10-8, 9.0x10-8, or 3.1x10-6, respectively, Table 2). Sensitivity 

analyses provide similar (excluding previously sequenced subjects) and extended results 

(prioritizing variants with high predicted functionality, Supplementary Note 3). Several 

interesting patterns emerge, many of which we owe to our chip design. 

 First, three of the four rare variant burden signals (CFH, CFI, TIMP3) are due to very 

rare variants, each with frequency <0.1%, all genotyped (Supplementary File 4). Many 

human genetic studies have used frequency thresholds of 1% to 5% as a working definition 

of “rare”, but our data suggests that trait associated variants with clear function may often be 
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much rarer – likely necessitating very large sample sizes for analysis. In two genes (CFH, 

CFI), the rare burden was detected because we enriched arrays with variants from previous 

sequencing of known AMD loci in cases and controls10 (54 of 80 variants). The burden 

findings in CFH (new, Supplementary Note 4) and CFI9 together with variants CFH:R1210C 

and CFI:G119R7,9, corroborate a causal role for these genes in AMD etiology.  

The third signal (TIMP3) was in a gene previously associated with Sorsby’s fundus 

dystrophy, a rare disease with early onset at <45 years of age but with clinical presentation 

strikingly similar to AMD33,34. Because the majority of Sorsby’s alleles disrupt cysteine-

cysteine bonds in TIMP3, we arrayed all possible cysteine disrupting sites together with other 

previously described Sorsby’s risk alleles 33,34. The nine rarest TIMP3 variants were 

cumulatively associated with >30-fold increased risk of disease. TIMP3 resides in an 

established AMD locus5,35 targeted in previous sequencing efforts32,35, that were too small to 

demonstrate an excess of rare variation on this scale (1 variant in 17,832 controls versus 29 

variants in 16,144 cases). Interestingly, although Sorsby-associated TIMP3 variants typically 

occur in exon 5, four of the unpaired cysteine residues we observed map to other exons – 

perhaps because unpaired cysteines in different locations impair protein folding in different 

ways, contributing to variation in disease severity or age of onset: disease onset for our 29 

cases with TIMP3 variants was ≥50 years of age (average 64.5 years). AMD cases with 

these rare TIMP3 risk alleles still exhibited much higher counts of AMD risk alleles across the 

genome than controls, suggesting that TIMP3 is not a monogenic cause of AMD but 

contributes to disease together with alleles at the other risk loci. Our finding illustrates a locus 

where complex and monogenic disorders arise from variation in the same gene, similar to 

MC4R and POMC in obesity36 or UMOD in kidney function37. In a similar approach, we 

analyzed 146 rare protein-altering variants in ABCA4, a gene underlying Stargardt disease38, 

but found no association (P=0.97).  

The rare variant burden signal in SLC16A8 was primarily driven by a putative splice 

variant (c.214+1G>C, rs77968014, minor allele frequency among controls, CAF = 0.81%, OR 

= 1.5, imputed with R²=0.87, Supplementary File 4). This is thus not a true burden from 

multiple rare variants, but a single variant emerging as significant due to the reduced multiple 

testing from gene-wide testing (single variant association P = 9.1x10-6, conditioned on 

rs8135665 P = 1.3 x 10-6). This variant is interesting as it is predicted to disrupt processing of 

the encoded transcript (as +1 G variant, Human Splicing Finder 3.0); however, functional 

analyses in relevant tissue would be required to substantiate the direct implication for gene 

function and AMD. SLC16A8 encodes a cell membrane transporter, involved in transport of 

pyruvate, lactate and related compounds across cell membranes39. This class of proteins 

mediates the acidity level in the outer retinal segments, and SLC16A8 gene knock-out 

animals have changes in visual function and scotopic electroretinograms, but not overt retinal 
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pathology 40. Interestingly, a progressive loss of SLC16A8 expression in eyes affected with 

GA was reported with increasing severity of disease41. In summary, our chip design and our 

large data set enabled us not only to detect interesting features of AMD genetics, but also to 

provide guidance for future investigations on rare variants.  

 

From Disease Loci to Biological Insights 

In addition to fine-mapping and searches for protein-altering rare variants, many analyses 

can further narrow the list of candidate genes in our identified loci. We annotated the 368 

genes closest to our 52 association signals (index variant and proxies, r² ≥0.5, ±100kb, 

Supplementary File 5), noting among these the genes those that contained associated 

credible set variants (Supplementary File 3) or a rare variant burden (Table 2) – these are 

the highest priority candidates, consistent with previous analysis of putative cis-regulatory 

variants42. We further checked whether genes were expressed in retina (82.6% of genes) or 

RPE/choroid (86.4%, Supplementary File 6). We sought relevant eye phenotypes in 

genetically modified mice (observed in 32 of the 368 queried genes, Supplementary File 7). 

We tagged genes in biological pathways enriched across loci, such as the alternative 

complement pathway, HDL transport, and extracellular matrix organization and assembly 

(Supplementary Table 10) – highlighting genes that connect multiple pathways 

(COL4A3/COL4A4, ABCA1, MMP9, and VTN). We also highlighted genes that were 

approved or experimental drug targets (31 of the 368 queried, Supplementary File 8). 

Finally, we prioritized genes where at least one of the credible set variants (Supplementary 

File 3) was protein-altering or located in a putative functional region (promoter, 3’/5’ UTR). 

All this information is summarized in the gene priority score table (Supplementary 

File 9, Supplementary Note 5), which uses a simple customizable scoring scheme to assign 

priority: the scheme using equal weights for each column assigns highest scores per novel 

locus (Figure 2A, Supplementary Table 11) to genes such as master regulators of immune 

function (PILRB), matrix metalloproteinase genes (MMP9, MMP19), a gene involved in lipid 

transport (ABCA1), a gene playing a role in lipid peroxidation and inflammation (GPX4), an 

inhibitor of the complement cascade (VTN), another collagen gene known to cause Alport’s 

syndrome (COL4A3), a gene causing a developmental monogenic disorder, the Noonan 

syndrome (PTPN11), and a retinol dehydrogenase involved in the regeneration of cone and 

rod photoreceptor segments previously associated with autosomal recessive night-blindness 

(RDH5). All of these are expressed in relevant tissues, several of these show relevant mouse 

phenotypes (MMP9, MMP19, COL4A3, PTPN11, GPX4, and RDH5), and six of these are 

current drug targets (ABCA1, MMP19, RDH5, PTPN11, VTN, GPX4). In the known AMD loci, 

the highest scores per locus included the usual suspects (CFH, CFI, CFB, C3, and APOE) as 

well as TIMP3 and SLC16A8 (Figure 2B). This summary of evidence may help prioritize 
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genes for follow-up functional experiments. It should be noted that much of the information 

was collected specifically for the genes in the identified loci (for example, by reviewing 

literature for animal models for each respective gene), rather than systematically annotating 

all genes genome-wide, so that this summary of evidence is not amenable to formal 

statistical enrichment analysis. 

 

Commonalities and differences between advanced AMD subtypes  

Previously identified risk variants all contribute to the two advanced AMD subtypes, CNV and 

GA. We compared association signals between our 10,749 cases with CNV and 3,235 cases 

with GA. Four of the 34 lead variants show significant difference (Pdiff < 0.05/34 = 0.00147) 

between disease subtypes (in the loci ARMS2/HTRA1, CETP, MMP9, SYN3/TIMP3, Figure 

3A, Supplementary Table 12). Variant rs42450006 upstream of MMP9 was the only one 

that was specific to one subtype, being exclusively associated with CNV (frequency in 

controls = 14.1%; ORCNV = 0.78 vs. ORGA = 1.04; Pdiff = 4.1x10-10), but not with GA 

(PGA=0.39). The signal was markedly stronger in an analysis restricted to CNV 

(Supplementary Note 6). The MMP9 signal for neovascular disease fits well with prior 

evidence: upregulation of MMP9 appears to induce neovascularization43; a feedback loop 

between VEGF signaling and MMP9 has been proposed in the RPE44. VEGF currently 

provides an effective therapy for patients with neovascular AMD, but the struggle to keep 

vision continues. Beyond confirming a shared genetic predisposition of the two subtypes, our 

data identifies – for the first time – one variant that is specific to one subtype.  

 

Commonalities and differences between advanced AMD and earlier disease stages  

We evaluated our association signals in 6,657 individuals with intermediate AMD, defined as 

having more than five macular drusen greater than 63µm and/or pigmentary changes in the 

RPE. Examining all genotyped variants28, we found a correlation of rho = 0.78, indicating 

substantial overlap between genetic determinants of advanced effects and and intermediate 

AMD (95% CI 0.69 to 0.87). Among our 34 index variants, 24 showed nominally significant 

association (Pintermediate ≤ 0.05) with intermediate AMD (2 expected, Pbinomial = 4.8x10-24); all 

had ORs in the same direction but smaller in magnitude (Figure 3B, Supplementary Table 

13). The other 10 variants showed no association with intermediate AMD (Pintermediate > 0.05), 

despite sufficient power (Supplementary Table  14). Interestingly, these 10 variants point to 

7 extra-cellular matrix genes (COL15A1, COL8A1, MMP9, PCOLCE, MMP19, CTRB1/2, 

ITGA7, Supplementary Table 15), based on which one may hypothesize that the extra-

cellular matrix points to a disease subtype without early stage manifestation or with 

extremely rapid progression. If confirmed, a group of rapidly progressing patients or without 
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early symptoms might eventually derive maximum benefit from genetic diagnosis and future 

preventive therapies. 

 

An Accounting of AMD Genetics 

To account for progress made here in understanding AMD genetics, we estimated the 

proportion of disease risk explained by our 52 independent variants and compared it to our 

initial estimates of heritability obtained by examining all genotyped variants. We computed a 

weighted risk score of the 52 variants45 and modeled a realistic genetic risk score distribution 

(see Materials and Methods). Individuals in the highest decile of genetic risk have a 44-fold 

increased risk of developing advanced AMD compared to the lowest decile; of these, 22.7% 

are predicted to have AMD in an elderly general population above 75 years of age with ~5% 

disease prevalence (Figure 4A, Supplementary Table 16). Altogether, the 52 variants 

explain 27.2% of disease variability (Figure 4B, also highlighting results based on other 

prevalence assumptions), including a 1.4% contribution from rare variants. The 52 identified 

variants thus explain more than half of the genomic heritability (estimated as 46.7%, see first 

results chapter). The balance might be attributed to additional variation not studied here, or 

to genetic interaction with environmental factors such as smoking, diet or sunlight exposure, 

or to chance. 

 

DISCUSSION 

We set out to improve our understanding of rare and common genetic variation for 

macular degeneration biology, so as to guide the development of therapeutic interventions 

and facilitate early diagnosis, monitoring and prevention of disease. AMD is an ideal role 

model to study complex disease genetics: it was the focus of the first successful genome-

wide study of common variants 46, and a total of 21 disease susceptibility loci with a broad 

range of effect sizes have been identified altogether 6-12. Here, we systematically examine 

rare variation (through direct genotyping) and common variation (through genotyping and 

imputation) for AMD in a study designed to discover >80% of associated protein-altering 

variants with an allele frequency of >0.1% and >3-fold increased disease risk (or >0.5% 

frequency and >1.8-fold increased disease risk). Our study provides a comprehensive 

simultaneous assessment of common and rare variation enabling us to understand the 

relative roles of rare and common variants and the scientific insights to be gained from rare 

variation.  

Rare protein-altering variants are an especially attractive target for genetic studies 

because most of these variants are expected to damage gene function. Furthermore, 

observing that many rare variants in a gene are, together, associated with a change in 

disease risk strongly suggests that the gene is causally implicated in disease biology and – 
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further – suggests the consequences of mimicking or blocking gene action using a drug. Our 

study demonstrates that when rare variants are systematically assessed in genome-wide 

assessments of large numbers of cases and controls, significant signals can be assigned to 

single rare variants as well as to rare variant burden in specific genes.  

Our study also demonstrates the challenges of these analyses. For three of the genes 

where we identified a rare variant burden, the accumulated evidence was spread across very 

rare variants with frequencies <0.1% in controls. Most of these variants derived from our 

enrichment of the chip with protein-altering variants in known AMD loci based on our own 

sequencing including AMD patients. This emphasizes the value of a hybrid approach with 

direct targeted sequencing in large sample sizes including patients to detect very rare 

variants and genotyping these variants in even larger sample sizes for association analysis. 

Another conclusion is about required sample sizes: although such rare variants are expected 

to exist in nearly all genes, no rare variant burden was observed in most of the 34 loci we 

studied. For these loci, identifying causal mechanisms through the study of rare protein-

altering variants will require even larger sample sizes to identify variants missed by our 

customized exome arrays. While our findings of rare variant burden are predominantly from 

targeted enrichment, the knowledge about effect sizes and frequencies of contributing 

variants illustrates that applying the approach genome-wide to detect new loci requires 

extremely large sample sizes. In our view, a recent estimate that sequencing of 25,000 cases 

will be needed to identify genes where rare variants have a substantial impact on disease 

risk is likely to be a starting point for rare variant analysis, rather than an ultimate target, 

particularly given the fact that effect sizes for AMD risk alleles appear to be larger than for 

many other complex traits 16.  

In addition to corroborating previous reports of rare variants that disrupt genes in the 

complement pathway and lead to large increases in disease risk, our study also includes two 

unexpected rare variant findings. First, we show that a putative splice variant in SLC16A8 

can greatly increase the risk of age-related macular degeneration – providing strong 

evidence that the gene is directly involved in disease biology. SLC16A8 is a lactate 

transporter expressed39 specifically by the RPE, and a deficit of lactate transport toward the 

choroid vasculature results in acidification of the retina and photoreceptor dysfunction as 

reported for SLC16A8 knock-out mice40. Second, we show a >30-fold excess of rare TIMP3 

mutations among putative cases of macular degeneration. TIMP3 is an especially attractive 

candidate that has been the subject of previous, underpowered, genetic association studies.  

While it has been hypothesized that studies of rare and low frequency genetic 

variants will greatly increase the proportion of genetic risk that can be explained, our results 

don’t support this. Our study and others successfully identify many low frequency disease 

risk alleles, and these provide clues about disease biology, but our results also show that 
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common variants make a much larger contribution to variability in disease risk. Common 

variants suggest a large number of interesting leads and pathways for future analysis 

(Supplementary Table 11, Figure 2A), including attractive candidates such as immune 

regulators (PILRB), genes implicated in mouse ocular phenotypes (MMP9, MMP19, 

COL4A3, PTPN11, GPX4, and RDH5), and proven drug targets (ABCA1, MMP19, RDH5, 

PTPN11, VTN, GPX4). In a literature search, we identified no previous candidate gene 

association studies targeting our novel loci, although several model organism, cellular, and 

functional studies evaluated potential links between genes in these loci and AMD (highlights 

of this search in Supplementary Table 11) and a few loci were nominally associated and 

proposed as candidates in prior genome-wide searches 47,48. As richer functional annotations 

of the genome49 become available in diverse cell types, systematic assessment of overlap 

between these and our loci should clarify disease biology.   

Our study also suggests additional important observations. While our results show 

that the majority of genetic risk is shared between GA and CNV, we also identify – for the 

first time – a variant that is specific to one advanced AMD subtype: a genetic variant near 

MMP9 is specific to CNV, a candidate gene also supported by prior gene expression 

analyses in the Bruch’s membrane of patients with neovascular disease50. Future efforts 

extending to longitudinal data might help improve the dissection of pure CNV and pure GA 

and their genetic make-up even further, but longitudinal data has still to be extended to yield 

sufficient sample sizes. If substantiated, the fact that nearly all disease associated variants 

modulate risk of both CNV and GA has potentially significant therapeutic consequences. It 

implies that individuals at high risk of CNV are also at high risk of GA. This suggests that 

therapeutic strategies which mitigate CNV but not GA will only provide temporary relief to 

patients – who are likely to remain at high risk of developing GA and may still require future 

interventions to prevent it.  

Therefore, our findings have several important implications for future studies of rare 

variation in human complex traits. First, they clearly emphasize the need for very large 

sample sizes in population studies: the functionally most interesting variants we identify have 

frequencies in the range of 0.01 – 1.0% and, despite their strong impact on disease risk, 

could only be implicated using 10,000s of individuals. Second, they illustrate the value of 

hybrid approaches, where sequencing is used to detect interesting variants and custom 

arrays and imputation are used to examine these variants in very large samples. Since all the 

large effect rare variants we identify reside in or near GWAS loci, as with most complex trait 

associated rare variants 7-11,20,21,23,51, focused studies around GWAS loci may continue to be 

a cost-effective compromise. Third, our analysis of cysteine variants in TIMP3 illustrates not 

only the potential for targeted variant discovery but the critical need to understand the 

consequences of rare variants when analyzing them together. While very large samples will 
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be needed, our results also show that the effort to extend genetic studies to rare variants is 

worthwhile as these variants can pinpoint causal genes and advance our understanding of 

disease biology.  

 

  



19 

 

References 

1. Smith, W. et al. Risk factors for age-related macular degeneration: Pooled findings from three 
continents. Ophthalmology 108, 697-704 (2001). 

2. Chakravarthy, U., Evans, J. & Rosenfeld, P.J. Age related macular degeneration. BMJ 340, 
c981 (2010). 

3. Ferris, F.L. et al. A simplified severity scale for age-related macular degeneration: AREDS 
Report No. 18. Arch Ophthalmol 123, 1570-4 (2005). 

4. Wong, W.L. et al. Global prevalence of age-related macular degeneration and disease burden 
projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2, 
e106-16 (2014). 

5. Fritsche, L.G. et al. Age-related macular degeneration: genetics and biology coming together. 
Annu Rev Genomics Hum Genet 15, 151-71 (2014). 

6. Fritsche, L.G. et al. Seven new loci associated with age-related macular degeneration. Nat 
Genet 45, 433-9, 439e1-2 (2013). 

7. Raychaudhuri, S. et al. A rare penetrant mutation in CFH confers high risk of age-related 
macular degeneration. Nat Genet 43, 1232-6 (2011). 

8. Helgason, H. et al. A rare nonsynonymous sequence variant in C3 is associated with high risk 
of age-related macular degeneration. Nat Genet 45, 1371-4 (2013). 

9. Seddon, J.M. et al. Rare variants in CFI, C3 and C9 are associated with high risk of advanced 
age-related macular degeneration. Nat Genet 45, 1366-70 (2013). 

10. Zhan, X. et al. Identification of a rare coding variant in complement 3 associated with age-
related macular degeneration. Nat Genet 45, 1375-9 (2013). 

11. van de Ven, J.P. et al. A functional variant in the CFI gene confers a high risk of age-related 
macular degeneration. Nat Genet 45, 813-7 (2013). 

12. Arakawa, S. et al. Genome-wide association study identifies two susceptibility loci for 
exudative age-related macular degeneration in the Japanese population. Nat Genet 43, 1001-
4 (2011). 

13. Gibson, G. Rare and common variants: twenty arguments. Nat Rev Genet 13, 135-45 (2011). 
14. Do, R., Kathiresan, S. & Abecasis, G.R. Exome sequencing and complex disease: practical 

aspects of rare variant association studies. Hum Mol Genet 21, R1-9 (2012). 
15. Nelson, M.R. et al. An abundance of rare functional variants in 202 drug target genes 

sequenced in 14,002 people. Science 337, 100-4 (2012). 
16. Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. 

Proc Natl Acad Sci U S A 111, E455-64 (2014). 
17. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-58 (2013). 
18. Styrkarsdottir, U. et al. Severe osteoarthritis of the hand associates with common variants 

within the ALDH1A2 gene and with rare variants at 1p31. Nat Genet 46, 498-502 (2014). 
19. Styrkarsdottir, U. et al. Nonsense mutation in the LGR4 gene is associated with several 

human diseases and other traits. Nature 497, 517-20 (2013). 
20. Rivas, M.A. et al. Deep resequencing of GWAS loci identifies independent rare variants 

associated with inflammatory bowel disease. Nat Genet 43, 1066-73 (2011). 
21. Flannick, J. et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat 

Genet 46, 357-63 (2014). 
22. Cruchaga, C. et al. Rare coding variants in the phospholipase D3 gene confer risk for 

Alzheimer's disease. Nature 505, 550-4 (2014). 
23. Do, R. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for 

myocardial infarction. Nature 518, 102-6 (2015). 
24. Lange, L.A. et al. Whole-exome sequencing identifies rare and low-frequency coding variants 

associated with LDL cholesterol. Am J Hum Genet 94, 233-45 (2014). 
25. Walters, R.G. et al. A new highly penetrant form of obesity due to deletions on chromosome 

16p11.2. Nature 463, 671-5 (2010). 
26. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. 

Nature 518, 197-206 (2015). 
27. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. 

Nature 518, 187-96 (2015). 
28. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex 

trait analysis. Am J Hum Genet 88, 76-82 (2011). 
29. Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M. & Wray, N.R. Estimation of pleiotropy 

between complex diseases using single-nucleotide polymorphism-derived genomic 
relationships and restricted maximum likelihood. Bioinformatics 28, 2540-2 (2012). 



20 

 

30. Wellcome Trust Case Control, C. et al. Bayesian refinement of association signals for 14 loci 
in 3 common diseases. Nat Genet 44, 1294-301 (2012). 

31. Wen, X. Bayesian model selection in complex linear systems, as illustrated in genetic 
association studies. Biometrics 70, 73-83 (2014). 

32. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene 
implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387-9 (2009). 

33. Sorsby, A. & Mason, M.E. A fundus dystrophy with unusual features. Br J Ophthalmol 33, 67-
97 (1949). 

34. Weber, B.H., Vogt, G., Wolz, W., Ives, E.J. & Ewing, C.C. Sorsby's fundus dystrophy is 
genetically linked to chromosome 22q13-qter. Nat Genet 7, 158-61 (1994). 

35. Abecasis, G.R. et al. Age-related macular degeneration: a high-resolution genome scan for 
susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74, 482-94 
(2004). 

36. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci 
associated with body mass index. Nat Genet 42, 937-48 (2010). 

37. Kottgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat 
Genet 42, 376-84 (2010). 

38. Allikmets, R. et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular 
degeneration. Science 277, 1805-7 (1997). 

39. Halestrap, A.P. The SLC16 gene family - structure, role and regulation in health and disease. 
Mol Aspects Med 34, 337-49 (2013). 

40. Daniele, L.L., Sauer, B., Gallagher, S.M., Pugh, E.N., Jr. & Philp, N.J. Altered visual function 
in monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol 295, 
C451-7 (2008). 

41. Shoshan, V., MacLennan, D.H. & Wood, D.S. A proton gradient controls a calcium-release 
channel in sarcoplasmic reticulum. Proc Natl Acad Sci U S A 78, 4828-32 (1981). 

42. Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS 
Genet 8, e1002639 (2012). 

43. Lambert, C. et al. Gene expression pattern of cells from inflamed and normal areas of 
osteoarthritis synovial membrane. Arthritis Rheumatol 66, 960-8 (2014). 

44. Hollborn, M. et al. Positive feedback regulation between MMP-9 and VEGF in human RPE 
cells. Invest Ophthalmol Vis Sci 48, 4360-7 (2007). 

45. Rudnicka, A.R. et al. Age and gender variations in age-related macular degeneration 
prevalence in populations of European ancestry: a meta-analysis. Ophthalmology 119, 571-80 
(2012). 

46. Klein, R.J. et al. Complement factor H polymorphism in age-related macular degeneration. 
Science 308, 385-9 (2005). 

47. Chen, W. et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci 
influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107, 
7401-6 (2010). 

48. Logue, M.W. et al. A search for age-related macular degeneration risk variants in Alzheimer 
disease genes and pathways. Neurobiol Aging 35, 1510.e7-18 (2014). 

49. The Encode Project Consortium. An integrated encyclopedia of DNA elements in the human 
genome. Nature 489, 57-74 (2012). 

50. Hussain, A.A., Lee, Y., Zhang, J.J. & Marshall, J. Disturbed matrix metalloproteinase activity 
of Bruch's membrane in age-related macular degeneration. Invest Ophthalmol Vis Sci 52, 
4459-66 (2011). 

51. Johansen, C.T. et al. Excess of rare variants in genes identified by genome-wide association 
study of hypertriglyceridemia. Nat Genet 42, 684-7 (2010). 

52. Price, A.L. et al. Pooled association tests for rare variants in exon-resequencing studies. Am J 
Hum Genet 86, 832-8 (2010). 

 

Acknowledgments:  

Data permitted for sharing by respective Institutional Review Boards, and/summary statistics 

reported in the paper will be archived in the database of Genotypes and Phenotypes 

(dbGaP; http://www.ncbi.nlm.nih.gov/gap). 

The UWA, LEI & Flinders group acknowledges financial support for participant recruitment 

and sample processing provided by the National Health and Medical Research Council 

http://www.ncbi.nlm.nih.gov/gap


21 

 

(NHMRC) of Australia (#1023911), the Ophthalmic Research Institute of Australia, the 

BrightFocus Foundation and a Ramaciotti Establishment Grant. CERA receives Operational 

Infrastructure Support from the Victorian Government. KPB, JEC and AWH are supported by 

NHMRC Fellowships. The authors acknowledge the support of B. Usher-Ridge, L. Palmer, L 

Ma and DL Lim in patient recruitment and data collection. 

The Pittsburgh group acknowledges funding to MBG from NIH/NEI R01 EY09859, Research 

to Prevent Blindness (N.Y, N.Y.), Harold and Pauline Price Foundation. 

The BDES (Beaver Dam Eye Study) was supported by grant EY06594 (to RK and BEKK) 

from the National Institutes of Health, as well as Senior Scientific Investigator Awards (to RK 

and BEKK) and an unrestricted grant (to the University of Wisconsin Department of 

Ophthalmology and Visual Sciences) from Research to Prevent Blindness. 

The Cambridge group was supported by the Medical Research Council, UK (grant G0000067 

to JRWY, ATM), the Macular Disease Society (JRWY, ATM); the Guide Dogs for the Blind 

Association (ATM, JRWY) and the Department of Health's NIHR Biomedical Research 

Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology. 

We thank the clinicians who helped with recruitment, the Reading Centre at Moorfields Eye 

Hospital, London for grading fundus photographs and the subjects who participated in the 

research. 

The EUGENDA-Cologne group was supported by a grant from the Retinovit foundation. 

The Vanderbilt group was supported by the National Institutes of Health Grants AG019085 

(JLH), EY023164 (JLH), EY022310 (JLH), EY012118 (JLH, AA, MAB), AG044089 (JDH), 

T32 EY007157 (JNCB) and a PhRMA Informatics fellowship (JNCB).  

The MMAP-Penn group was supported by the Arnold and Mabel Beckman Initiative for 

Macular Research (CAC), Research to Prevent Blindness Inc (CAC), EyeSight Foundation of 

Alabama (CAC), and NIH EY023164 (DS).  

The Oregon group was supported by National Eye Institute grants EY021532, and 

EY0105712, and an unrestricted departmental grant from Research to Prevent Blindness. 

The Edinburgh group using the Scottish AMD study was funded by the Chief scientists Office 

(Scotland) CSO reference number: CZB/4/79 and would like to thank Alan Wright, Ana 

Armbrecht and Fraser Imrie for collecting the samples and all of the individuals who 

participated in this study. 

The EU/JHU study acknowledges the support of the CEPH Biological Resource Centre by 

the French Ministère de l'Enseignement Supérieur et de la Recherche, Foundation Fighting 

Blindness Clinical Research Institute (FFB, CRI), an unrestricted grant to the Wilmer Eye 

Institute from Research to Prevent Blindness, and Baylor-Johns Hopkins Center for 

Mendelian Genetics (National Human Genome Research Institute, NHGRI/NIH; 

1U54HG006542-01). 



22 

 

The Jerusalem study was supported by grants from the Israel Science fund (ISF) and the 

Israeli Ministry of Health.  

The Southampton study acknowledges Southampton Wellcome Trust Clinical Research 

Facility for research nurse support in collecting DNA samples, Helen Griffiths (Clinical and 

Experimental Sciences, University of Southampton) for technical support in processing DNA 

and all the patients who contributed to this work. AJL supported at the University of 

Southampton by funding from The Wellcome Trust (076169/A), American Health Assistance 

Foundation (M2007110), Macula Vision Research Foundation, TFC Frost Charitable Trust, 

Brian Mercer Charitable Trust, Macular Society, Hobart Trust and the Gift of Sight appeal. 

The Marshfield group was supported by grants NIH NCATS: UL1TR000427, NIH NHGRI: 

1U01HG006389, and support from the Marshfield Clinic Research Foundation. 

The Melbourne study was supported by the National Health and Medical Research Council 

Australia, project grant 1008979, Centre for Clinical Research Excellence #529923 - 

Translational Clinical Research in Major Eye Diseases. NHMRC Research Fellowship (PNB, 

#1028444). CERA receives Operational Infrastructure Support from the Victorian 

Government. 

The Miami group was supported by National Institutes of Health Grants R01 EY012118 

(MAP-V, WKS, JLK, SGS, MDC), EY023164 (MAP-V, WKS, JLH, MAP-V), EY022310 (MAP-

V) and T32 EY023194 (RJS) and P30-EY005722. All Bascom Palmer Eye Institute authors 

are partially supported by NIH Center Core Grant P30EY014801 and an unrestricted grant 

from Research to Prevent Blindness, New York, NY, USA. 

The MMAP-Michigan and AREDS groups were supported by Intramural Research Program 

of the National Eye Institute (ZO1 EY000475); the AREDS study was supported by the 

National Eye Institute/National Institutes of Health, (contract no.: HHS-NOI-EY-0-2127), 

Bethesda Maryland; the AREDS2 study was supported by the intramural program funds and 

contracts from the National Eye Institute/National Institutes of Health (NEI/NIH), Department 

of Health and Human Services, Bethesda, MD. Contract No. HHS-N-260-2005-00007-C. 

ADB Contract No. N01-EY-5-0007. The Michigan study was supported by the National Eye 

Institute (EY0022005) and the National Human Genome Research Institute (HG006513 

HG007022), Foundation Fighting Blindness and National Institutes of Health/National Eye 

Institute Grant-EY016862. 

The NHS/HPF studies were supported by EY021900, EY017362, EY13824, EY009611, 

CA87969, CA49449, and HL35464.  

The Regensburg group was supported by BMBF-01ER1206 (to IMH), EFKS 2012_A147 

(IMH), BMBF-01GP1308 (IMH), the Deutsche Forschungsgemeinschaft (grant WE 1259/19-1 

and WE1259/19-2, BHFW), and the Alcon Research Institute (BHFW).  



23 

 

The Rotterdam-Clinic study was supported by ZoNMW project number: 170885606, 

MDfonds, Landelijke Stichting voor Blinden en Slechtzienden (LSBS). 

The UCSD study was supported by grants from NIH (grants EY014428, EY018660, 

P30EY022589), 863 Program (2014AA021604), and Research to Prevent Blindness. ZS is 

supported by 863 Program (2014AA021604), ZY is supported by National Natural Science 

Foundation of China (81170883 and 81430008), KZ is supported by NIH grants 

(1R01EY018660-01A10) and VA Merit Award.  

The EUGENDA-Neijmegen study was supported by MD Fonds, Gelderse Blindenstichting, 

Algemene Vereniging ter Voorkoming van Blindheid, Stichting Nederlands Oogheelkundig 

Onderzoek, Oogfonds. 

The Utah study was supported by the ALSAM Foundation, an unrestricted grant from 

Research to Prevent Blindness to the Department of Ophthalmology and Visual Sciences, 

University of Utah, SOM, Moran Eye Center.  

The Seoul National University Bundang group was supported by grants from the National 

Research Foundation of Korea, funded by the Ministry of Education, Science, and 

Technology (grant numbers; NRF-2009-0072603 and NRF-2012R1A1A2008943). 

The Westmead/Sydney samples were collected in three studies that were supported by the 

National Health and Medical Research Council (NHMRC), Australia: Grant IDs 974159, 

211069, 457349 and 512423 supported the Blue Mountains Eye Study that provided 

population-based controls; Grant ID 302010 supported the Cataract Surgery and Risk of 

Age-related Macular Degeneration study that provided clinic-based early and late AMD 

cases and controls; and Grant ID 571013 supported the Genes and Environment in late AMD 

study that provided clinic-based late AMD cases. NHMRC Senior Research Fellowship (JJW, 

358702, 632909). NHMRC Senior Research Fellowship (JJW, 358702, 632909). The 

NHMRC had no role in the design or conduct of these studies. 

The Columbia study was supported by the National Institutes of Health/NIH grants R01-

EY013435 and P30-EY019007, and Research to Prevent Blindness (New York, NY). 

The CWRU group was supported by VA Merit Review (NSP), Foundation Fighting Blindness 

(SAH), Research to Prevent Blindness (SAH); International Retinal Research Foundation 

(SKI).  

CIDR Program contract number HHSN268201200008I. 

 

We thank all participants of all the studies included for enabling this research by their 

participation to these studies. Computer resources for this project have been provided by the 

High Performance Computing Centers of the University of Michigan and the University of 

Regensburg. The Regensburg Team would like to thank Randy Rueckner for technical 

assistance. 



24 

 

Figure legends 

Figure 1. Genome-wide search reveals 34 loci and genes with rare variant burden for 

AMD. (a) We conducted a genome-wide single variant association analysis for >12 million 

variants in 16,144 advanced AMD patients versus 17,832 controls. Shown is the Manhattan 

Plot exhibiting P-values for association highlighting novel (P < 5x10-8 for the first time, green) 

and known (blue) AMD loci (see Table 1). (b) We computed independent effect size (log 

Odds Ratios) of each of the 52 identified variants (Supplementary Table 4). Shown are 

these effect sizes versus the frequency of the AMD risk increasing allele and a 80% power 

curve. (c) We conducted a genome-wide gene-based test for disease burden based on the 

protein-altering variants testing 17,044 RefSeq genes by the variable threshold test52. Shown 

is the Manhattan Plot with P-values, the red horizontal line indicating genome-wide 

significance (P ≤ 0.05/17,044 = 2.9x10-6) and the yellow line indicating AMD-locus-wide 

significance (given 703 genes in the 34 AMD loci, P ≤ 0.05/703 = 7.1x10-5). No gene outside 

the 34 loci is genome-wide significant; 14 genes are AMD-locus-wide significant (blue), four 

remain significant after locus-wide conditioning (bold letters, Supplementary Table 9). 

 

Figure 2. Genes with top priority based on biological and statistical evidence 

combined. We queried 368 genes in the 34 narrow AMD regions (index and proxies, r² ≥0.5, 

±100kb) for biological (red; expression in retina/RPE/choroid, Supplementary File 6; ocular 

mouse phenotype, Supplementary File 7), statistical, (blue; ≥1 credible set variant in gene 

±50 kb, Supplementary File 3; rare variant burden, Table 2), putative functional (green; ≥ 1 

credible set variant in gene ±50 kb being protein-altering, 5’/3’ UTR, other exonic, or putative 

promoter, Supplementary File 3), and molecular (magenta; enriched molecular pathway, 

drug target) evidence. We here focus on the gene(s) with the highest gene priority score 

(GPS) per locus (full list of genes in Supplementary File 9). Shown are (a) the 16 genes 

with highest GPS in the 15 novel AMD loci (one novel locus without any gene), and (b) the 

25 genes with highest GPS in the 18 known AMD loci. Colored fields indicate yes and GPS 

counts number of colored fields per row. 

 

Figure 3. Comparison of advanced AMD subtypes and intermediate versus advanced 

AMD. We compared associations of the 34 lead variants across different AMD phenotypes. 

Shown are effect sizes (log Odds Ratio) per minor allele in controls as well as 95% 

confidence intervals (widths and heights of diamonds). (a) Comparison of neovascular 

disease (10,749 CNV cases vs. 17,832 controls) and GA (3,235 GA cases vs. 17,832 

controls) identified four variants (in loci MMP9, ARMS2/HTRA1, CETP, and SYN3/TIMP3) 

with significantly different association comparing CNV with GA (Pdiff < 0.05/34, marked in red, 
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see also Supplementary Table 12). (b) Comparison of intermediate AMD (6,657 cases vs. 

17,832 controls) with advanced AMD (16,144 cases vs. 17,832 controls) identifies 24 

variants with nominally significant (P < 0.05, marked in red) association with intermediate 

AMD (Pbinomial = 4.8 x 10 -24), all of which have the same effect direction and less extreme 

effect sizes compared to advanced AMD (Supplementary Table 13). 

 

Figure 4. Variance explained and absolute risk of disease based on the 52 identified 

variants. (a) Absolute disease risk (=proportion of affected) by genetic risk score intervals 

(deciles and top 10 percentiles in embedded bar plot) based on our cases-control-data 

weighted to model a general population with 5% disease prevalence (see also 

Supplementary Table 16). (b) Shown is disease liability explained by the 52 identified 

variants (bars) compared to the genomic heritability based on all genotyped variants (red 

lines) assuming disease prevalence of 1%, 5%, or 10%, respectively. 
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Table 1. Thirty-four loci for age-related macular degeneration. Our genome-wide single-

variant association analysis identified 34 loci for advanced AMD with genome-wide 

significance (P < 5 x 10-8) based on logistic regression in 16,144 cases and 17,832 controls of 

European ancestry. Shown are P-values and effect sizes (Odds Ratios, OR) for the variant 

with the smallest P-value per locus (lead variant) and the number of independent signals per 

locus (see Supplementary Table 4) 

Lead Variant 
C
hr 

Position
a
 

Major/ 
minor 
allele 

Locus name
b
 

# 
Sig-
nals

c
 

MAF Association 

Cases Controls OR P 

KNOWN (previously reported with genome-wide significance, P < 5 x 10
-8

) 

rs10922109 1 196,704,632 C/A CFH 8 0.223 0.426 0.38 9.6 x 10
-618

 
rs62247658 3 64,715,155 T/C ADAMTS9-AS2 1 0.466 0.433 1.14 1.8 x 10

-14
 

rs140647181 3 99,180,668 T/C COL8A1 2 0.023 0.016 1.59 1.4 x 10
-11

 
rs10033900 4 110,659,067 C/T CFI 2 0.511 0.477 1.15 5.4 x 10

-17
 

rs62358361 5 39,327,888 G/T C9 1 0.016 0.009 1.80 1.3 x 10
-14

 
rs116503776 6 31,930,462 G/A C2/CFB/SKIV2L 4 0.090 0.148 0.57 1.2 x 10

-103
 

rs943080 6 43,826,627 T/C VEGFA 1 0.465 0.497 0.88 1.1 x 10
-14

 
rs79037040 8 23,082,971 T/G TNFRSF10A 1 0.451 0.479 0.90 4.5 x 10

-11
 

rs1626340 9 101,923,372 G/A TGFBR1 1 0.189 0.209 0.88 3.8 x 10
-10

 
rs3750846 10 124,215,565 T/C ARMS2/HTRA1 1 0.436 0.208 2.81 6.5 x 10

-735
 

rs9564692 13 31,821,240 C/T B3GALTL 1 0.277 0.299 0.89 3.3 x 10
-10

 
rs61985136 14 68,769,199 T/C RAD51B 2 0.360 0.384 0.90 1.6 x 10

-10
 

rs2043085 15 58,680,954 T/C LIPC 2 0.350 0.381 0.87 4.3 x 10
-15

 
rs5817082 16 56,997,349 C/CA CETP 2 0.232 0.264 0.84 3.6 x 10

-19
 

rs2230199 19 6,718,387 C/G C3 3 0.266 0.208 1.43 3.8 x 10
-69

 
rs429358 19 45,411,941 T/C APOE 2 0.099 0.135 0.70 2.4 x 10

-42
 

rs5754227 22 33,105,817 T/C SYN3/TIMP3 1 0.109 0.137 0.77 1.1 x 10
-24

 
rs8135665 22 38,476,276 C/T SLC16A8 1 0.217 0.195 1.14 5.5 x 10

-11
 

NOVEL (reported with genome-wide significance, P < 5 x 10
-8

, for the first time) 

rs11884770 2 228,086,920 C/T COL4A3 1 0.258 0.278 0.90 2.9 x 10
-8

 
rs114092250 5 35,494,448 G/A PRLR/SPEF2 1 0.016 0.022 0.70 2.1 x 10

-8
 

rs7803454 7 99,991,548 C/T PILRB/PILRA 1 0.209 0.190 1.13 4.8 x 10
-9

 
rs1142 7 104,756,326 C/T KMT2E/SRPK2 1 0.370 0.346 1.11 1.4 x 10

-9
 

rs71507014 9 73,438,605 GC/G TRPM3 1 0.427 0.405 1.10 3.0 x 10
-8

 
rs10781182 9 76,617,720 G/T MIR6130/RORB 1 0.328 0.306 1.11 2.6 x 10

-9
 

rs2740488 9 107,661,742 A/C ABCA1 1 0.255 0.275 0.90 1.2 x 10
-8

 
rs12357257 10 24,999,593 G/A ARHGAP21 1 0.243 0.223 1.11 4.4 x 10

-8
 

rs3138141 12 56,115,778 C/A RDH5/CD63 1 0.222 0.207 1.16 4.3 x 10
-9

 
rs61941274 12 112,132,610 G/A ACAD10 1 0.024 0.018 1.51 1.1 x 10

-9
 

rs72802342 16 75,234,872 C/A CTRB2/CTRB1 1 0.067 0.080 0.79 5.0 x 10
-12

 
rs11080055 17 26,649,724 C/A TMEM97/VTN 1 0.463 0.486 0.91 1.0 x 10

-8
 

rs6565597 17 79,526,821 C/T NPLOC4/TSPAN10 1 0.400 0.381 1.13 1.5 x 10
-11

 
rs67538026 19 1,031,438 C/T CNN2 1 0.460 0.498 0.90 2.6 x 10

-8
 

rs142450006 20 44,614,991 TTTTC/T MMP9 1 0.124 0.141 0.85 2.4 x 10
-10

 

rs201459901 20 56,653,724 T/TA C20orf85 1 0.054 0.070 0.76 3.1 x 10
-16

 

Chr = Chromosome; MAF = minor allele frequency; OR = Odds Ratio a Chromosomal position 
is given based on NCBI RefSeq hg19; b The locus name is a label of the region using the 
nearest gene(s), but does not necessarily state the responsible gene; c number of independent 
variants in this locus; hg19 = human genome reference assembly (version 19) 
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Table 2. Four genes with a significant rare variant burden within the 34 AMD loci 

independent from other identified variants. We computed a gene-based burden test of rare 

protein-altering variants comparing 16,144 advanced AMD cases and 17,832 controls. Shown 

are P-values from the variable threshold test (up to 100 million permutations) and Odds Ratios 

from the collapsed burden test, both adjusted for the other identified variants in the respective 

locus (locus-wide conditioning). Four genes (among the 703 genes in the 34 AMD locus 

regions) showed a significant (P < 0.05/703 = 7.1 x 10-5) burden. Details about the 

corresponding rare variants underlying the observed burden can be found in Supplementary 

File 4. Results for the 14 genes that show significant burden within the 34 AMD loci without 

locus-wide conditioning are shown in Supplementary Table 9. Rare variants were defined 

here as variants with minor allele frequency in cases and controls < 1% in each of the 

ancestries, European, Asian, and African. 

Gene 

Optimal 
Threshold for  

Rare 
Variants 

 
Count (%) 

Number of 
Variants below 
Optimal RAC 

 

Summed 
Rare Allele Count 
(Frequency [%]) 

Pa 
Odds 
Ratio Total  

(Exome Chip Base + 
Custom) 

Cases 
N = 16,144 

Controls 
N = 17,832 

CFH 10 (0.015%) 37 (9+28)  88 (0.273%) 38 (0.107%) 1.2 x 10-6 2.94 

CFI 46 (0.068%) 43 (17+26)  213 (0.660%) 82 (0.230%) 1.0 x 10-8 2.95 

TIMP3 14 (0.021%) 9 (1+8)  29 (0.0898%) 1 (0.00280%) 9.0 x 10-8 31.21 

SLC16A8 648 (0.954%) 9 (7+2)  487 (1.51%) 392 (1.10%) 3.1 x 10-6 1.40 

RAC = rare allele count; a P-values are from the variable threshold test conditioned on other 

identified variants in the locus (locus-wide conditioned).  
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ONLINE METHODS 

Study data and phenotype. In the International AMD Genomics Consortium (IAMDGC), we 

gathered 26 studies with each including (i) advanced AMD cases with GA and/or CNV in at 

least one eye and age at first diagnosis ≥ 50 years, (ii) intermediate AMD cases with 

pigmentary changes in the RPE or more than five macular drusen greater than 63m and 

age at first diagnosis ≥ 50 years, or (iii) controls without known advanced or intermediate 

AMD. Recruitment and ascertainment strategies varied by study (Supplementary Tables 1 

and 2): Advanced and intermediate AMD cases were mostly recruited from ophthalmology 

clinics (61.6% of cases), but also in spouses and friends of cases (2.1%), from general 

population (18.5%), or via mixed approaches (17.8%); controls were recruited among elderly 

individuals at ophthalmology clinics (53.0% of controls), among spouses and friends of cases 

(2.6%), from general population (26.4%), or via mixed approaches (18.0%). Of all subjects, 

94.5% ascertained disease status via fundus photography or fundus exam; one study (5.5% 

of subjects) validated interview information through the patients’ ophthalmologist. Of the 26 

studies, 18 studies used Fluorescein Angiography or Optic Coherence Tomography for 

differentiating GA from neovascular disease. Grading scales, used to ascertain intermediate 

AMD, differed – as usual – across studies. All groups collected data according to the 

Declaration of Helsinki principles. Study participants provided informed consent and 

protocols were reviewed and approved by local ethics committees.  

 

DNA and chip design. We gathered DNA samples of more than 50,000 individuals. Groups 

with very limited amounts of available DNA contributed aliquots after whole-genome 

amplification (8% of subjects).  

We utilized a custom-modified HumanCoreExome array by Illumina, Inc., which 

includes (i) tagging variants across the genome (genome chip content) and (ii) a catalogue of 

protein-altering variants (exome chip content). Our customization of the array included three 

additional tiers to enrich for variants from 22 AMD loci implicated by our previous genome-

wide association analysis6 based on 19 index variants with genome-wide significance, 3 with 

consistent effect direction in the replication stage and 4x10-7 ≤ P ≤ 2x10-6) by selecting (iii) 

tagging variants (pair-wise tagging r² < 0.8) from Phase I 1000G/HapMap53,54 common 

variants (minor allele frequency, MAF, ≥ 1 % in European or East Asian individuals) using 

Tagger implemented in Haploview55 within ±100kb of the 22 index variants expanded to 

cover all correlated variants (r² [EUR] > 0.5) and the complete gene (transcript ±1 kb), (iv) 

protein-altering variants within 500 kb of the 22 index variants as identified from public 

general population data bases (dbSNP56, the NHLBI Exome Sequencing Project57, the Phase 

I 1000 Genomes Project, see Web Resources), and (v) protein-altering variants within the 

500 kb of the 22 index variants identified by re-sequencing AMD case-control study data 
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(targeted re-sequencing of 2,335 AMD cases and 789 controls10,58 and whole-genome 

sequencing 60 AMD cases and 60 controls; G. Abecasis and A. Swaroop). The 

customization further included (vi) the 1,000 top independent (> 2 Mb distant) variants from 

the previous analysis and additional 100 top variants from each the previous CNV only and 

the previous GA only analysis, (vii) and 375 variants in ABCA4, including known variants 

causing Stargardt disease59, benign variants, and those of unknown significance, as well as 

10 known and 44 predicted cysteine mutations in TIMP3, motivated by the known variants 

causing Sorsby's fundus dystrophy33,34 (also B. Weber, personal communication). 

 

Annotation. Variant identifiers were based on NCBI dbSNP v137. Chromosomal position 

and functional annotation of the variant was based on the NCBI Reference Sequence Human 

Genome Build 19 (RefSeq hg19)60 and SeattleSeq Annotation 13861 (see Web Resources). 

We particularly focus on protein-altering variants including non-synonymous coding variants 

(missense, stop loss, in-frame insertion/deletion, frameshift, premature stop codon) and 

splice sites. We converted the description of splice site variants to HGVS nomenclature using 

Mutalyzer version 2.0.beta-3362 (see Web Resources). 

 

Genotypes. We genotyped all subjects centrally at the Center for Inherited Diseases 

Research (CIDR), Johns Hopkins University School of Medicine, Baltimore, MD, USA. From 

the 569,645 genotyped variants, our stringent quality control procedure excluded poorly 

genotyped variants as evidenced by genotype call rates < 98.5% (5.8%), deviations from 

Hardy-Weinberg equilibrium with P < 10-6 (0.34%), variants that mapped at multiple genome 

locations (0.25%) or variants failing other criteria, resulting in 521,950 (91.6%) variants 

passing all quality criteria. After excluding monomorphic variants (15.8%), we yielded 

264,655 common variants distributed across autosomes, sex chromosomes, and the 

mitochondria, as well as 163,714 directly genotyped protein-altering variants including 8,290 

from previously implicated AMD loci (Supplementary Table 3A). For these variants, 

genotype call rates averaged 99.9% (99.1% for subjects with amplified DNA). 

We phased the autosomal and X-chromosomal genotype data using SHAPEIT (200 

states, 2.5 Mb windows)63, then imputed genotypes based on the 1000 Genomes Project64 

reference panel (1000G Phase I, version 3, SHAPEIT2 Reference) using MINIMAC65 

(reference-based 2.5 Mb chunks, 500 kb buffer regions). We then merged study variants that 

were excluded during imputation (not found in the reference panel) back into the final data 

set. We excluded common variants (CAF ≥ 1%) with bad imputation quality, R2 < 0.3, and 

adopted a more stringent exclusion criterion for rare variants (CAF < 1%), R2 < 0.8, for the 

initial identification of lead variants. This yielded a total of 12,023,830 genotyped (439,350) or 

imputed (11,584,480) quality-controlled variants (Supplementary Table 3A).  
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Analyzed subjects. Using the genomic information for subject-level quality control, we 

excluded duplicated and related individuals (kinship coefficient  ≥ 0.0884, i.e. 3rd degree 

relatives or closer)66, subjects with discrepancies between reported gender and sex 

chromosomal information or with atypical sex chromosome configurations67, or subjects with 

genotyping call rates < 98.5%; we derived  ancestry based on the first two principal 

components using autosomal genotyped variants together with genotype information of the 

samples from the Human Genome Diversity Project (HGDP)68. Our final data set contained 

43,566 successfully genotyped unrelated subjects including 16,144 advanced AMD cases 

and 17,832 controls of European ancestry, 6,657 intermediate AMD cases of European 

ancestry, and 2,933 subjects (advanced AMD or controls) of Asian or African ancestries 

(Supplementary Table 3B). 

 

Genomic heritability and genomic correlation. Combined contribution of genotyped 

variants to disease was evaluated using a variance-component based heritability analysis69. 

This analysis used genotypes to build a similarity matrix, summarizing the overall genetic 

kinship between each pair of individuals, and then examined the correspondence between 

genetic and phenotypic similarity. We estimated the explained variance on all genotyped, 

autosomal variants using restricted maximum likelihood (REML) analysis implemented in 

GCTA28 (see Web Resources). We jointly estimated the contributions of rare (MAF in 

controls < 1 %) and common (MAF in controls ≥ 1%) genotyped variants by first separately 

calculating their genetic relationship matrices before adding both to the model. Obtained 

estimates of variance explained were transformed from the observed scale to the liability 

scale assuming various levels of disease prevalence69. 

We estimated the genomic correlation between different disease sub-phenotypes 

using bivariate REML analyses implemented in GCTA and only included common (MAF in 

controls ≥ 1%) genotyped variants 29. We compared 10,749 cases with CNV versus 3,325 

cases with GA (excluding the 2,070 cases with mixed CNV and GA) and we compared 6,657 

intermediate AMD cases with 16,144 advanced AMD cases. For both analyses, we used the 

control subjects as reference and avoided shared controls between traits by randomly 

splitting the 17,832 unrelated European control individuals into two sub-samples of 8,916 

individuals.  

 

Genome-wide single variant association analysis. Single-variant association tests 

analyzing the 16,144 advanced AMD cases and 17,832 controls of European ancestry were 

based on the Firth bias-corrected likelihood ratio test70, which is recommended for genetic 

association studies that include rare variants71, as implemented in EPACTS (see Web 



31 

 

Resources). Analyses were adjusted for two principal components and source of DNA 

(whole-blood or whole-genome amplified DNA). Allele dosages of the imputed data were 

utilized, Sensitivity analyses were conducted to evaluate the influence of alternative 

association tests, alternative covariate adjustment including age or sex, or up to 10 principal 

components instead of two, as well as the influence of restricting to population-based 

controls, or to controls aged 50 years or older. Genomic control correction72 was used to 

account for potential population stratification using all genotyped variants with minor allele 

count ≥ 20 outside of 20 previously described AMD loci6,9. As usual for genome-wide 

association studies, we considered P-values ≤ 5 x 10-8 as genome-wide significant. 

To identify independently associated variants, we adopted a sequential forward selection 

approach: We first computed single variant association for each of the > 12 million variants. 

Then we selected the variant with the smallest P-value and its flanking ±5 Mb region, 

repeating the process until no genome-wide significant variant (P ≤ 5 x 10-8) was left yielding 

a number of 10 Mb regions. Within each of these large regions, we re-analyzed each variant 

conditioning on the top variant, and repeated this process by adding the previously identified 

genome-wide significant variant(s) within the respective 10 Mb region. This yielded one or 

more independently associated genome-wide significant variant(s) per 10 Mb region. 

A locus region was defined by a genome-wide significant variant and its correlated 

variants (r²≥ 0.5) ± 500kb; overlapping locus regions were merged to one locus, so some loci 

contained more than one index variant (details in Supplementary Figure 3).  

In order to derive independent effect sizes (log odds ratios) for all identified variants, 

we computed a fully conditioned logistic regression model including all identified variants.  

 

Bayesian approach to prioritize variants. In order to summarize the statistical evidence of 

a variant for its association strength, we computed the Bayes factor for each variant, which is 

a measure of the strength of the association that is comparable irrespective of variant 

frequency or study sample size. It provides the probability of the genotype configuration at a 

variant (in cases and controls) under the alternative hypothesis (association) divided by the 

probability of the genotype configuration under the null hypothesis (no association). It is 

computed using the association results per variant 73. The posterior probability of each 

variant is then computed as the Bayes factor relative to the sum of all variants’ Bayes factors 

across one locus region and can be thought of as the relative strength of evidence in favor of 

each SNP studied in the respective region. This assumes that there is one causal variant per 

region and that the causal variant is in the analyzed data set. 

Expanding to loci with multiple association signals and thus a single alleged causal 

variant per signal, we used the association results per SNP obtained by conditioning on the 

other independent variants at that locus for computing the Bayes factor. 
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We derived 95% credible sets of variants per signal, which is the minimal set of 

variants, for which the sum of the posterior probabilities accumulates beyond 95%. This 

approach was recommended for fine-mapping of association signals and for prioritizing 

variants74. Assuming that there is only one causal variant in an association signal and that 

the causal variant is contained among the analyzed variants, such a credible set of variants 

contains the causal variant with 95% probability. 

We annotated functionality of the variants in each of the 95% credible sets (see 

above).  

 

Gene-based burden analysis. Single variant analyses have limited power to depict rare 

variants with association. Gene-based burden tests evaluating accumulated association from 

multiple rare variants per gene have been shown to complement such analyses and improve 

power to detect a burden of disease. We computed the burden of disease using the variable 

threshold test52 as implemented in EPACTS. These analysis assume that all variants in a 

gene either increase or decrease disease risk. When variants with opposite directions of 

effect reside in the same gene, power will be reduced. An analysis with SKAT and SKAT-O, 

which both allow for variants with opposite directions of effect to reside in the same gene, did 

not identify additional signals (data not shown). 

We focused this analysis on protein-altering variants, since we assumed that the 

other (not protein-altering) variants would outnumber these predicted deleterious variants by 

far and would thus dilute a disease burden from the deleterious variants. Assuming a 

negative selection against such deleterious variants that cause their frequency to be low 

across ancestries, we restricted our rare variant definition to variants with MAF < 1% (cases 

and controls combined) in each of our ancestry groups (African, Asian, and European). We 

utilized the genotypes of these rare protein-altering variants if genotyped directly, or rounded 

imputed allele dosages to the next best genotype if imputed; imputed variants were restricted 

to those of highest imputation quality (RSQ >= 0.8).  

We assessed statistical significance by adaptive permutation testing with variable 

thresholds (up to 100 million permutations; minimal P-value = 1 x 10-8)52. When rare variants 

appear on a haplotype associated with disease through a common variant allele already 

identified for AMD, the rare variant burden would depict a mere shadow of the already 

identified variant. Therefore, we repeated the variable threshold test conditioned on the 

variant(s) identified in the respective locus by single variant analysis (locus-wide 

conditioning), to unravel a gene-based burden of rare variants independent of risk variants 

identified in single variants tests.  

First, we searched for rare variant disease burden genome-wide applying a genome-

wide Bonferroni-corrected significance threshold of 0.05 / 17,044 = 2.9 x 10-6 (17,044 genes 
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genome-wide with at least 1 variant included in the analysis, i.e. with ≥ 1 rare protein-altering 

variant). In a second view on this, we focused on our 34 identified AMD loci and here applied 

a significance threshold based on the 703 genes overlapping with the locus regions (P < 0.05 

/ 703 = 7.1 x 10-5). Odds ratio estimates of the burden were derived by logistic regression 

using the Wald test on the collapsed burden.  

There was an overlap of the sequenced subjects with the chip data subjects: of the 

3264 subjects in the overlap, 3084 had passed our quality control including 2959 unrelated 

subjects of European ancestry with either late AMD (858), early AMD (1451), or no AMD 

(650). We conducted a sensitivity analysis for the burden test excluding the 858 advanced 

AMD subjects and the 650 control subjects (thus comparing15,286 advanced AMD subjects 

to 17,182 control subjects).  

 

Follow-up queries for genes underneath the association signals. In order to derive 

information for all genes underneath our 52 identified association signals (spread across the 

34 AMD loci), we built a gene list containing all genes that overlapped with a more narrow 

definition of locus regions: We have been using a particularly comprehensive definition of the 

locus region during the signal identification step (index variants and proxies, r² ≥ 0.5, 

±500kb), to avoid far-reaching linkage disequilibrium that may generate shadow signals 

(particularly in the light of strong associations in the CFH, C3, C2/CFI, and ARMS2/HTRA1 

loci) and to optimally differentiate independent signals within a locus. We have also used this 

wide locus region definition for the rare variant burden test again to fully correct for 

independent signals in the respective wider locus regions and to be conservative in the 

multiple testing corrections for the AMD-locus-wide burden test search. However, this wide 

definition is less adequate when prioritizing genes around the identified signals under the 

assumption that most protein-altering or regulating variants exert their effects in cis42. We 

thus focused the gene list for further queries to a more narrow locus region definition (index 

variants and proxies, r² ≥ 0.5, ± 100kb) and yield 368 overlapping RefSeq genes 

(Supplementary File 5). 

 

Gene expression. For the 368 genes in our gene list (see above), we sought to obtain gene 

expression in relevant tissues, retina, RPE, and choroid, in two independent data sets.  

In the first laboratory (Dwight Stambolian Lab; University of Pennsylvania), we used 

RNA-Seq to characterize the chorioretinal transcriptomes in a discovery set of eight normal 

human eyes (two eyes from each of four persons)75. For each eye, we sequenced four RNA-

Seq samples and generated close to 100 million 101-bp paired-end reads per sample. We 

mapped the sequence reads to the reference human genome (hg19) using GSNAP76. Our 

data are of high quality with 76–94% of the reads mapped to the human genome and 60–
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81% retained after stringent quality control filtering, among which 86–93% mapped to genes 

defined by RefSeq. We considered the overall gene expression in each sample. Using 

filtered mapped reads, we estimated the expression levels of 23,569 RefSeq protein-coding 

genes using the fragments per kilobase of gene per million mapped fragment (FPKM) 

metric77. With coverage depth ranging from 66 to 133 million paired-end reads per sample, 

we detected expression of the majority of known protein-coding genes75. We considered 

genes and transcripts to be expressed, if FPKM > 0. Among the 23,569 genes with available 

expression for retina tissue or RPE/choroid/sclera, respectively, 290 genes for retina and 300 

for RPE/choroid/sclera tissue overlapped with the 368 genes in the gene list.  

In the second independent laboratory (Weber lab; University of Regensburg), we 

used RNA-Seq to estimate the relative abundance of known and novel transcripts in human 

retina, RPE and RPE-related cell types. Each tissue/cell line was sequenced as biological 

replicate, e.g. RNA was retrieved from cells of two individuals. The NextFlex Directional 

RNASeq library preparation kit (UDP based) from Bioo was used and between 30 and 60 

million 75bp paired-end reads for each library were generated. The Tuxedo Tools pipeline 

(BowTie, TopHat, and Cufflinks) was used to map the reads to the genome and 

transcriptome and to quantify the abundance of transcripts measured as fragments per 

kilobase of gene per million mapped fragments (FPKM)77. We considered genes and 

transcripts to be expressed, if the respective FPKM value of the gene/transcript was greater 

than the first quartile of all FPKM values obtained from the tissues. Among the 20,590 with 

available expression available in retina tissue or RPE/choroid, respectively, 316 genes for 

retina and for REP/choroid overlapped with the 368 genes in gene list.  

A consensus rating of gene expression observed in the two labs was derived as 

follows: Expression of a gene in one set of tissues (retina or RPE/choroid) was inferred, if 

both labs detected expression in the respective set of tissues; if at least one of the labs did 

not observe expression, the gene was considered as not expressed; gene expression of all 

other genes (one lab observing expression and the other with missing, or both labs with 

missing data) was regarded as missing. 

 

Mouse model phenotypes. For the 368 genes in our gene list, we queried the Mouse 

Genome Informatics (MGI)78 and the International Mouse Phenotyping Consortium (IPMC)79 

data bases (see Web Resources), and manually curated results by information from 

published literature. We determined whether a gene exhibited a relevant eye-phenotype (i.e. 

retina, RPE, or choroid phenotypes) in established genetic mouse models (knock-out, knock-

in, or trans-genic mice).  
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Enrichment for molecular pathways. For the 368 overlapping genes, we performed 

functional enrichment analysis using INRICH80 with default settings unless stated otherwise. 

Target intervals of this analysis were the narrow AMD locus regions (index variants and 

proxies, r² ≥ 0.5, ± 100kb, Supplementary Table 5). Since there is no consensus approach 

to pathway analysis, we queried multiple data bases: (i) Kyoto Encyclopedia of Genes and 

Genomes (KEGG)81, (ii) Reactome82, and (iii) Gene Ontology (GO) Consortium83 (see Web 

Resources). For example, while KEGG is a manually curated database on metabolic 

pathways, GO also includes automatic annotations and more comprehensive set of cellular 

processes and molecular functions. To reduce the multiple testing burden, we used gene 

sets with 5 to 200 genes that overlapped at least three overlapping target intervals. All our 

imputed/genotyped common (MAF in cases and controls combined ≥ 1%) variants genome-

wide in these target regions were used to inform this analysis regarding variant density; no P-

value threshold was used. We carried out the analysis with 1,000,000 replicates and 50,000 

bootstrap rounds to yield corrected P-values, matching selected target regions in terms of 

gene count, variant density (80-120%) and total number of variants. 

 

Drug pathways and targets. In order to derive information on whether the product of a gene 

among the 368 genes in our gene list was a direct drug target, we searched the DrugBank 

database (Version 4.1) which contains 4,207 drug targets (= genes) and 7,740 drugs 84(see 

Web Resources).  

 

Explained variability in disease liability. Based on the 52 identified AMD variants, we 

estimated the explained proportion of disease liability explained by these variants (see Web 

Resources)85 using the log Odds Ratio estimates from the model including all 52 identified 

variants (fully conditioned) to derive independent effect sizes. We compared this proportion 

explained by the 52 variants with the earlier derived genomic heritability based on all 

genotyped variants (see above).  

 

Genetic risk score and relative and absolute genetic risk of AMD. For each individual, 

we computed a genetic risk score (GRS) as the effect size weighted sum of the AMD risk 

increasing alleles for all 52 independent variants divided by the sum of all effect sizes. For 

the weighting, the log Odds Ratios for each of the 52 variants were derived from the fully 

adjusted model (including all 52 variants), to assure independence of effect sizes.  

In order to also derive a realistic genetic risk score distribution, we modeled a general 

population based on our case-control data by weighing each case individual using  

wcase = Prevalence / (Ncases / (Ncases + Ncontrols)) 

and each control individual using  
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wcontrol = (1 - Prevalence) / (Ncontrols / (Ncases + Ncontrols)), 

with Prevalence being an assumed prevalence of advanced AMD in the general population. 

We computed several scenarios using prevalence estimates of 1%, 5%, or 10% reflecting 

approximate prevalence of advanced AMD in the general population above the age of 50, 75, 

or 85 years of age, respectively. For this modeled general population, we derived the GRS 

distribution and its deciles.  

We derived relative risk estimates (as Odds Ratios) for each GRS decile with the first 

decile as reference. This relative risk estimate per se is independent of the prevalence 

except that the decile to form the genetic risk groups used the GRS distribution as expected 

in a general population (which requires a prevalence assumption). We also computed 

absolute risk estimates per GRS decile, which is given by the proportion of advanced AMD 

cases applying the weights, again, as described above. This estimate depends on the 

prevalence. 
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Web Resources: 

Full GWAS results: http://csg.sph.umich.edu/abecasis/public/amd2015/ 

 

The following Web Resources have been utilized:  

GWAS catalog http://www.ebi.ac.uk/gwas/home), 

Exome Variant Server, NHLBI GO Exome Sequencing Project:  

http://evs.gs.washington.edu/EVS/ 

EPACTS: http://www.sph.umich.edu/csg/kang/epacts/index.html 

SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html 

MINIMAC: http://genome.sph.umich.edu/wiki/Minimac 

1000 Genomes Reference Panel: 

http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G.2013-09.html 

The Human Genome Diversity Project data:  

http://genome.sph.umich.edu/wiki/LASER and http://www.hagsc.org/hgdp 

SeattleSeq: http://snp.gs.washington.edu/SeattleSeqAnnotation138/index.jsp 

Mutalyzer: https://mutalyzer.nl 

NCBI Reference Sequence (RefSeq, downloaded December, 2012): 

http://www.ncbi.nlm.nih.gov/refseq/ 

Human Splicing Finder 3.0: http://www.umd.be/HSF3/index.html 

PubMed (retrieved November 11, 2014): http://www.pubmed.org 

Mouse Genome Informatics (MGI) databases: http://www.informatics.jax.org 

International Mouse Phenotyping Consortium Database: https://www.mousephenotype.org 

INRICH: http://atgu.mgh.harvard.edu/inrich/ 

KEGG: Kyoto Encyclopedia of Genes and Genomes (KEGG): http://www.genome.jp/kegg/ 

MSigDB database v4.0: http://www.broadinstitute.org/gsea/index.jsp 

Reactome (downloaded January 12th, 2015): http://www.reactome.org 

Gene Ontology (GO) Consortium (downloaded January 12th, 2015): http://geneontology.org 

DrugBank (downloaded June 4, 2014): http://www.drugbank.ca 

GCTA: http://www.complextraitgenomics.com/software/gcta/ 

Variance explained by genetic variants: 

https://sites.google.com/site/honcheongso/software/varexp 
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Supplementary Figure 1: Flow chart of subject processing and quality control. We 

removed technical controls and performed quality control (QC, e.g. exclusion of subjects with 

low call rate, violation of Hardy-Weinberg-equilibrium, or unexpected duplicates). We then 

imputed all remaining subjects together with the 1000 Genomes Project reference panel 

(Phase I). We excluded external subjects (sample collection unconnected to this project) and 

classified subjects by genetically inferred relatedness and ancestry. Advanced AMD cases 

with age below 50 years (N=211) or subjects with missing phenotypes (N=475) were 

classified as “unclear phenotype”. Subjects with advanced AMD and controls of any ancestry 

as well as European subjects with intermediate AMD were analyzed (green boxes).   

  

Genotyped 
Subjects 

N=55,720 

Technical 
Controls 
N=1,805 

Quality Control 
N=53,915 

Failed QC 
N=1,778 

Passed QC 
N=52,137 

Imputation using 
1000 Genomes 

Project Reference 

External Subjects 

N=4,768 

IAMDGC Subjects 
N=47,369 

Unrelated 
N=44,813 

Clear Phenotype 
N=44,103 

European 
Ancestry 
N=40,633 

Advanced AMD 
Cases N=16,144 

Controls 
N=17,832 

Intermediate 
AMD N=6,657 

Non-European 
Ancestries     

African N=546 
Asian N=1,750 

Others N=1,174 

Advanced AMD 
Cases N=779 

Controls 
N=2,154 

Intermediate 
AMD N=537 

Unclear 
Phenotype 

N=710 

Related 
N=2,556 
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Supplementary Figure 2. Quantile-quantile plot for genome-wide single-variant 

association analysis. Shown are the observed P-values (-log10 P) from the single-variant 

association analysis (16,144 advanced AMD cases versus 17,832 controls) for all variants 

(blue) and without the variants in the known AMD loci (green) compared to those expected 

under the null hypothesis (no association). The black dotted line indicates the identity (no 

association) and the 95% confidence interval. The observed P-values are genomic control 

corrected by the lambda factor of 1.130.  
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Supplementary Figure 3: Locus identification procedure.  

Primary  
GWA analysis 

• Conduct genome-wide association analysis (primary GWA) 

• Apply genomic control correction of Pvalues (and standard errors) 

10 Mb regions 
of interest 

•  Select 10 Mb regions of interest with at least one genome-wide significant variant: 
(1) select variants with P<  5x10-8,  
(2) sort by increasing P,  
(3) first variant in the list +/- 5 Mb defines a region of interest, write into results file 
(4) delete all variants in this region,  
(5) repeat (3) and (4) until list is empty   

•  Merge overlapping regions to identify distinct regions of interest 

Independent 
variants 

• Within each region of interest, identify all statistically independent variants  
(1) select variant with smallest P (which is genome-wide significant), write into results file 
(2) conduct region-wide association analysis conditioning on variants in results file and 
apply genomic control correction on newly identified variants  
(3) from the results of (2), if smallest P is < 5x10-8, select variant write into results file; 
otherwise stop,  
(4) repeat (2) and (3)   

LD regions 

•  Identify LD regions around each independent variant:  
(1) identify regions containing all variants with r² >= 0.5 around independent variants 
(restricting to controls for r² computation) 
(2) add +/- 500Kb to each region 
(3) merge overlapping regions 

Locus 

•  Define loci:  
(1) Define a locus as an LD regions that contains at least one variant with P <= 5x10-8 in 
the primary GWA analysis  
(2) Define the variant with the smallest P-value in the locus, the top signal of the locus 
(3) A locus may contain multiple independent variants that have reached P < 5 x 10-8 in 
the sequential conditioning analyses 
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Supplementary Figure 4: A counter example for credible set variants being able to 

depict the most likely causal variant(s) in the case of haplotype effects. Haplotype 

analysis elucidated that rs116503776 (C2/CFB/SKIV2L), which is the sole 95% credible set 

variant in this signal, tags two previously described CFB missense variants, rs4151667 

(CFB:L9H) and rs641153 (CFB:R32Q). Using the 16,144 patients and 17,832 controls, we 

derived the SNP and haplotype associations for the three variants, with haplotypes estimated 

during imputation. Shown are Odd Ratios (OR) and P-values from Firth's bias-corrected 

logistic regression, adjusting for principal components, DNA source, and for the other index 

variants in the locus (rs144629244, rs114254831, rs181705462, locus-wide conditioning). 

(A) The rs116503776 (SKIV2L intron) showed a stronger association than CFB:L9H or 

CFB:R32Q and is thus included into the 95% credible set as the statistically most likely 

causal variant (in fact as the sole credible set variant, posterior probability = 1.00; 

Supplementary Table 7). (B) Haplotype analysis revealed that it is not the A-allele of 

rs116503776 that carries the risk (H4), but rather its coinciding with the A-allele of L9H or 

R32Q (H2 and H3, respectively), which is supported by the rare haplotype with the R32Q A-

allele without the rs116503776 A-allele (H5) carrying risk.  

A 

 

B 

Haplotype 
No.* 

Haplotype 
 Haplotype 

Frequency [%] 
OR P 

rs4151667 
L9H 

rs641153 
R32Q 

rs116503776 
 

Cases Controls 

H1 T G G  90.9 85.1 Reference 

H2 T A A  4.8 8.9 0.49 4.8 x 10-94 

H3 A G A  2.5 4.6 0.54 8.9 x 10-39 

H4 T G A  1.7 1.3 0.89 0.22 

H5 T A G  0.1 0.2 0.53 0.0066 

*Haplotype H6 “A-G-G” with frequency < 0.01 % was excluded. 
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Supplementary Table 1: Number of subjects per study. Stated are the numbers of 

unrelated individuals of European or non-European ancestry contained in each study after 

quality control. Quality control ensured that subjects were unique to one study.  

 

Study Name Advanced AMD Intermediate 
AMD 

Controls Total 

 Mixed
(a) 

CNV(b)  GA(c)     

AREDS 226 1,197 448 2,325 329 4,525 

BDES 41 42 39 538 798 1,458 

CWRU 322 294 237 171 646 1,670 

Cambridge 127 579 139 0 421 1,266 

EUGENDA - Cologne 12 280 9 231 577 1,109 

Columbia 81 321 89 239 546 1,276 

EU / JHU 36 518 254 260 668 1,736 

Edinburgh 0 180 44 145 194 563 

Jerusalem 0 305 1 43 207 556 

Marshfield 149 10 26 563 2,738 3,486 

Melbourne 51 457 67 0 404 979 

Miami 69 525 114 349 364 1,421 

MMAP - Michigan 192 351 174 98 633 1,448 

NHS / HPF 0 154 0 258 1,029 1,441 

Oregon 69 429 164 0 276 938 

MMAP - Penn 96 459 146 212 853 1,766 

Pittsburgh 210 254 115 130 130 839 

Regensburg 365 935 367 159 1,149 2,975 

Rotterdam 10 102 13 0 0 125 

Southampton 17 254 63 167 588 1,089 

UCSD 72 1,040 172 149 2,049 3,482 
EUGENDA - 
Neijmegen 12 314 35 220 445 1,026 

Utah 6 676 59 77 1,107 1,925 

UWA, LEI & Flinders 2 1,040 432 0 2,493 3,967 

Vanderbilt 0 391 78 181 552 1,202 

Westmead / Sydney 24 299 43 142 790 1,298 

Total 2,189 11,406 3,328 6,657 19,986 43,566 

(a) subjects with CNV in one eye and GA in the other eye, (b) subjects with CNV 

in at least one eye, (c) subjects with GA in at least one eye and no evidence of 

CNV in either eye 
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Supplementary Table 2. Recruitment and ascertainment per study. Detailed information was gathered regarding recruitment and ascertainment for each of 

the 26 studies from the study ophthalmologists and principal investigators. Grading of intermediate AMD include AREDS1, a modified AREDS (Clinical-Age-

Related Maculopathy Staging, CARMS)2, the Wisconsin3, the International4, and the EUGENDA5 grading systems. 

Study Name Recruitment Ascertainment  
via fundus photo/exam 

Ascertain-
ment 

via FA / OCT 

Grading system Ref. 

 Adv. AMD Int. AMD Controls Adv. AMD Int. AMD Controls CNV Int. AMD  

AREDS Clinic Clinic Clinic Yes Yes Yes OCT AREDS 
1,6

 
BDES Population Population Population Yes Yes Yes OCT Modified Wisconsin 

7
 

Cambridge Clinic NA Spouses/friends Yes NA Yes OCT International 
8
 

EUGENDA-Cologne Clinic/volunt. Clinic/volunt. Population/volunt. Yes Yes Yes FA/OCT EUGENDA 
5
 

Columbia Clinic Clinic Clinic Yes Yes Yes OCT Modified International  
9
 

CWRU Clinic Clinic Clinic Yes Yes Yes No AREDS 
10

 
Edinburgh Clinic Clinic Clinic Yes Yes Yes No International 

8
 

EU / JHU 
(a)

 Mixed  Mixed  Mixed  Yes Yes Yes/No 
(a)

 FA/OCT
(a)

 International/AREDS 
11

 
Jerusalem Clinic Clinic Clinic Yes Yes Yes FA/OCT AREDS 

12,13
 

Marshfield Clinic Clinic Population Yes Yes Yes FA/OCT customized 
14

 
Melbourne Clinic Clinic Population Yes Yes Yes FA/OCT International 

11
 

Miami Clinic Clinic Spouses/friends Yes Yes Yes FA/OCT Modified AREDS 
15

 
MMAP-Michigan Clinic Clinic Clinic Yes Yes Yes No International 

16
  

NHS / HPFS Population Population Population No 
(b)

 No 
(b)

 No 
(b)

 No None 
17

 
Oregon Clinic Clinic Clinic Yes Yes Yes FA AREDS 

11
 

MMAP-Penn Clinic Clinic Clinic Yes Yes Yes No AREDS 
16

 
Pittsburgh Clinic Clinic Clinic Yes Yes Yes No customized 

18
 

Regensburg Clinic Clinic Spouses/friends Yes Yes Yes No International 
19

 
Rotterdam Clinic NA NA Yes NA NA OCT Wisconsin/modified Int.  
Southampton Clinic Clinic Clinic Yes Yes Yes FA/OCT AREDS 

20
 

UCSD Clinic Clinic Clinic Yes Yes Yes OCT AREDS 
21,22

 
EUGENDA-Neijmegen Clinic Popul./clinic Population/clinic Yes Yes Yes FA/OCT EUGENDA 

5
 

Utah
 (c)

 Mixed Mixed mixed Yes 
(c)

 Yes 
(c)

 Yes 
(c)

 FA/OCT AREDS 
23

 
UWA/LEI & Flinders

(d)
 Mixed Mixed Mixed Yes Yes Yes No International 

24-26
 

Vanderbilt Clinic Clinic Spouses/friends Yes Yes Yes FA/OCT Modified AREDS 
15

 
Westmead/Sydney

(e)
 Clinic Clinic Mixed  Yes Yes Yes FA/OCT Modified Wisconsin 

27-29
 

Clinic = recruitment via ophthalmology clinic; Population = recruitment via general population study; Volunt. = recruitment of volunteers; Int. AMD = Intermediate AMD, Adv. 
AMD = Advanced AMD; FA = Fluorescin Angiography; OCT = Optical Coherence Tomography; CNV=choroidal neovascularization; Ref = Reference; EUG = EUGENDA (a) 
EU/JHU includes several studies: Jerusalem, Paris, Southampton, Baltimore, Bonn, and Créteil: all with FA/OCT (except Paris: OCT, Southampton: FA); (b) NHS/HPF with 
cases via practitioner-confirmed self-report, controls self-reported unaffected. (c) Utah includes four collections: SNUBH, Greece (cases/controls from clinics), NESC (cases 
from clinic, controls from population), Timor (cases/controls from population); all cases ascertained via fundus photography/exam. (d) UWA recruited from population, LEI & 
Flinders from clinic; (e) Sydney-Westmead includes: Blue Mountains Eye Study (controls from population), unpublished study by Paul Mitchell (cases from clinic), Cataract 
Surgery and AMD study (cases/controls from clinic).  
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Supplementary Table 3: Study characteristics. Shown are: (A) the number of genotyped and imputed 

variants by predicted function, and (B) the number of subjects, in the analysed data set after quality control.  

A 

 
# Variants 

total 
# rare variants 

MAFa < 1% 

# moderately 
common variants 

MAFa [1 – 10%) 

# very common 
variants 

MAFa ≥ 10% 

Genotyped variantsb 
    

Non-synonymous excluding 
frameshift and stop codon 

152,046 133,064 10,319 8,663 

Premature stop codon 6,820 6,660 107 53 

Frame-shift 2,328 2,280 24 24 

Splice Site 2,520 2,428 51 41 

Other 275,636 30,263 31,003 214,370 

Total genotyped 439,350 174,695 41,504 223,151 

Imputed variants b 
    

Non-synonymous c 12,180 3,600 4,212 4,368 

Premature Stop Codons 233 59 73 101 

Frame-shift 349 75 138 136 

Splice Site 171 53 62 56 

Other 11,571,547 2,871,531 3,788,768 4,911,248 

Total imputed 11,584,480 2,875,318 3,793,253 4,915,909 

TOTAL 12,023,830 3,050,013 3,834,757 5,139,060 
a MAF = minor allele frequencies in the 17,832 European controls. b Annotated based on RefSeq hg19 
using SeattleSeq Annotation 138.  
 
B 

 Sample Size Female Age (yrs)d 

 N % Mean (SD) 

European Ancestry    

Advanced AMD 16,144 60% 76.79 (8.26) 

GAa 3,235 59% 76.81 (8.62) 
CNVb 10,749 60% 76.68 (8.14) 

Mixedc 2,160 60% 77.28 (8.25) 

Intermediate AMD 6,657 59% 74.30 (8.76) 

Controls 17,832 56% 70.71 (9.70) 

Total European Ancestry 40,633 58% 73.70 (9.42) 

Non-European Ancestrye    
Advanced AMD 779 50% 72.75 (9.15)  
Controls 2,154  55% 67.00 (11.56)  

Total Non-European Ancestry 2,933 55% 69.08 (10.95) 

Total 43,566 58% 73.33 (9.63) 

GA = geographic atrophy, CNV = choroidal neovascularisation, SD = standard deviation.  
a Patients with GA in at least one eye and no evidence of CNV in any eye; b Patients with CNV in at 
least one eye; c Patients with CNV in at least one eye and GA in at least one eye and both eyes 
affected; d For cases, age at onset if available, otherwise age at exam; for controls, age at exam; e 
Non-European Ancestries included 1,572 Asians (473 advanced AMD cases, 1,099 controls), 413 
Africans (52 advanced AMD cases, 361 controls), and 948 subjects with other ancestries (254 
advanced AMD cases, 694 controls). 
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Supplementary Table 4: Identification of 52 independent AMD risk variants in 34 loci. The single variant genome-wide association analysis in 

16,144 advanced AMD cases and 17,832 controls of European ancestry identified 52 independent variants through a sequential forward selection 

regression approach (see Supplementary Figure 3) within 34 loci (locus region defined by the independent variants, their correlated variants, r² ≥0.5, 

±500kb, merging overlapping regions). Horizontal lines separate loci that were analysed jointly during sequential forward selection due to their physical 

proximity (within 10 Mb). Shown are effect sizes (Odds Ratios, OR) and P-values of the primary analysis (unconditioned single variant association 

analysis), the sequential forward selection as the variant identifying analysis, and the fully conditioned analysis (all 52 index variants in the model) to 

derive independent ORs. 

Signal  
number

a
 
Locus name Index variant

e
 RSQ

f
 Chr:Position 

Major /  
minor 
allele 

Minor allele 
frequency 

 Primary 
analysis 

 Sequential forward 
selection 

c
 

 Fully conditioned 
analysis 

d
    

Cases Controls 
 

OR P 
 

OR P 
 

OR P 

1.1 CFH rs10922109 1.00 1:196,704,632 C/A .223 .426 
 
0.38 9.6 x 10

-618
 
 

... ... 
 
0.51 1.0 x 10

-131
 

1.2 CFH rs570618 1.00 1:196,657,064 G/T .580 .364 
 
2.38 2.0 x 10

-590
 
 
1.65 6.0 x 10

-112
 

 
1.74 9.2 x 10

-76
 

1.3 CFH rs121913059 - 1:196,716,375 C/T .003 .00014 
 
20.28 8.9 x 10

-24
 

 
33.2 1.8 x 10

-32
 

 
47.63 2.2 x 10

-35
 

1.4 CFH rs148553336 - 1:196,613,173 T/C .003 .009 
 
0.29 8.6 x 10

-26
 

 
0.31 8.9 x 10

-21
 

 
0.31 8.8 x 10

-17
 

1.5 CFH rs187328863 0.83 1:196,380,158 C/T .054 .028 
 
2.27 1.1 x 10

-68
 

 
1.43 9.2 x 10

-13
 

 
1.47 2.8 x 10

-12
 

1.6 CFH (CFHR3/CFHR1)
b
 rs61818925 0.87 1:196,815,450 G/T .284 .385 

 
0.60 6.0 x 10

-165
 
 
1.18 1.3 x 10

-10
 

 
1.18 6.3 x 10

-9
 

1.7 CFH rs35292876 - 1:196,706,642 C/T .021 .009 
 
2.42 8.2 x 10

-37
 

 
1.55 2.9 x 10

-9
 

 
1.54 9.5 x 10

-8
 

1.8 CFH rs191281603 0.42 1:196,958,651 C/G .007 .006 
 
1.07 0.68 

 
0.39 1.4 x 10

-8
 

 
0.41 7.7 x 10

-7
 

2 COL4A3 rs11884770 0.98 2:228,086,920 C/T .258 .278 
 
0.90 2.9 x 10

-8
 

 
... ... 

 
0.92 2.6 x 10

-4
 

3 ADAMTS9-AS2 rs62247658 1.00 3:64,715,155 T/C .466 .433 
 
1.14 1.8 x 10

-14
 

 
... ... 

 
1.14 7.8 x 10

-11
 

4.1 COL8A1 rs140647181 0.77 3:99,180,668 T/C .023 .016 
 
1.59 1.4 x 10

-11
 

 
... ... 

 
1.85 1.6 x 10

-14
 

4.2 COL8A1 rs55975637 0.99 3:99,419,853 G/A .132 .117 
 
1.15 1.3 x 10

-8
 

 
1.16 2.3 x 10

-9
 

 
1.16 3.8 x 10

-7
 

5.1 CFI rs10033900 - 4:110,659,067 C/T .511 .477 
 
1.15 5.4 x 10

-17
 

 
... ... 

 
1.15 1.2 x 10

-13
 

5.2 CFI rs141853578 - 4:110,685,820 C/T .003 .0008 
 
3.64 6.3 x 10

-10
 

 
3.87 8.6 x 10

-11
 

 
5.12 7.4 x 10

-12
 

6 C9 rs62358361 0.98 5:39,327,888 G/T .016 .009 
 
1.80 1.3 x 10

-14
 

 
... ... 

 
1.67 7.2 x 10

-9
 

7 PRLR/SPEF2 rs114092250 0.88 5:35,494,448 G/A .016 .021 
 
0.70 2.1 x 10

-8
 

 
0.70 3.6 x 10

-8
 

 
0.71 9.5 x 10

-6
 

8.1 C2/CFB/SKIV2L rs116503776 - 6:31,930,462 G/A .090 .148 
 
0.57 1.2x 10

-103
 

 
... ... 

 
0.51 5.0 x 10

-96
 

8.2 C2/CFB/SKIV2L rs144629244 - 6:31,946,792 G/A .016 .012 
 
1.39 2.6 x 10

-6
 

 
2.50 5.9 x 10

-35
 

 
2.79 1.0 x 10

-32
 

8.3 C2/CFB/SKIV2L (PBX2)
 b
 rs114254831 - 6:32,155,581 A/G .284 .260 

 
1.13 9.4 x 10

-12
 

 
1.15 1.8 x 10

-14
 

 
1.13 8.8 x 10

-9
 

8.4 C2/CFB/SKIV2L rs181705462 1.00 6:31,947,027 G/T .018 .012 
 
1.55 3.1 x 10

-10
 

 
1.49 1.0 x 10

-8
 

 
1.56 2.8 x 10

-8
 

9 VEGFA rs943080 - 6:43,826,627 T/C .465 .497 
 
0.88 1.1 x 10

-14
 

 
... ... 

 
0.87 5.8 x 10

-13
 

10 KMT2E/SRPK2 rs1142 0.99 7:104,756,326 C/T .370 .346 
 
1.11 1.4 x 10

-9
 

 
... ... 

 
1.14 1.3 x 10

-10
 

11 PILRB/PILRA rs7803454 1.00 7:99,991,548 C/T .209 .190 
 
1.13 4.8 x 10

-9
 

 
1.13 3.7 x 10

-9
 

 
1.15 2.8 x 10

-9
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12 TNFRSF10A rs79037040 - 8:23,082,971 T/G .451 .479 
 
0.90 4.5 x 10

-11
 

 
... ... 

 
0.89 5.1 x 10

-9
 

13 MIR6130/RORB rs10781182 1.00 9:76,617,720 G/T .328 .306 
 
1.11 2.6 x 10

-9
 

 
1.10 ... 

 
1.12 1.5 x 10

-6
 

14 TRPM3 rs71507014 0.99 9:73,438,605 GC/G .427 .405 
 
1.10 3.0 x 10

-8
 

 
... 3.6 x 10

-8
 

 
1.11 2.3 x 10

-8
 

15 TGFBR1 rs1626340 1.00 9:101,923,372 G/A .189 .209 
 
0.88 3.8 x 10

-10
 

 
... ... 

 
0.88 4.0 x 10

-7
 

16 ABCA1 rs2740488 0.96 9:107,661,742 A/C .255 .275 
 
0.90 1.2 x 10

-8
 

 
0.90 1.0 x 10

-8
 

 
0.89 6.0 x 10

-7
 

17 ARHGAP21 rs12357257 0.98 10:24,999,593 G/A .243 .223 
 
1.11 4.4 x 10

-8
 

 
... ... 

 
1.12 1.8 x 10

-6
 

18 ARMS2/HTRA1 rs3750846 1.00 10:124,215,565 T/C .436 .208 
 
2.81 6.5 x 10

-735
 
 

... ... 
 
2.93 6.0 x 10

-645
 

19 RDH5/CD63 rs3138141 0.59 12:56,115,778 C/A .222 .207 
 
1.16 4.3 x 10

-9
 

 
... ... 

 
1.18 4.7 x 10

-8
 

20 ACAD10 rs61941274 0.73 12:112,132,610 G/A .024 .018 
 
1.51 1.1 x 10

-9
 

 
... ... 

 
1.60 3.2 x 10

-9
 

21 B3GALTL rs9564692 1.00 13:31,821,240 C/T .277 .299 
 
0.89 3.3 x 10

-10
 

 
... ... 

 
0.90 1.0 x 10

-6
 

22.1 RAD51B rs61985136 0.97 14:68,769,199 T/C .360 .384 
 
0.90 1.6 x 10

-10
 

 
... ... 

 
0.88 8.2 x 10

-10
 

22.2 RAD51B rs2842339 - 14:68,986,999 A/G .107 .094 
 
1.14 1.4 x 10

-6
 

 
1.17 1.6 x 10

-8
 

 
1.18 3.3 x 10

-7
 

23.1 LIPC rs2043085 - 15:58,680,954 T/C .350 .381 
 
0.87 4.3 x 10

-15
 

 
... ... 

 
1.15 7.7 x 10

-13
 

23.2 LIPC rs2070895 - 15:58,723,939 G/A .195 .217 
 
0.87 2.4 x 10

-11
 

 
0.87 1.8 x 10

-11
 

 
0.86 1.8 x 10

-10
 

24.1 CETP rs5817082 0.99 16:56,997,349 C/CA .232 .264 
 
0.84 3.6 x 10

-19
 

 
... ... 

 
0.87 2.7 x 10

-8
 

24.2 CETP rs17231506 1.00 16:56,994,528 C/T .348 .315 
 
1.16 2.2 x 10

-18
 

 
1.11 1.7 x 10

-8
 

 
1.11 1.2 x 10

-6
 

25 CTRB2/CTRB1 rs72802342 0.84 16:75,234,872 C/A .067 .080 
 
0.79 5.0 x 10

-12
 

 
... ... 

 
0.79 8.0 x 10

-9
 

26 TMEM97/VTN rs11080055 0.98 17:26,649,724 C/A .463 .486 
 
0.91 1.0 x 10

-8
 

 
... ... 

 
0.92 1.5 x 10

-5
 

27 NPLOC4/TSPAN10 rs6565597 0.84 17:79,526,821 C/T .400 .381 
 
1.13 1.5 x 10

-11
 

 
... ... 

 
1.12 2.1 x 10

-7
 

28.1 C3 rs2230199 - 19:6,718,387 C/G .266 .208 
 
1.43 3.8 x 10

-69
 

 
... ... 

 
1.47 1.6 x 10

-60
 

28.2 C3 rs147859257 - 19:6,718,146 T/G .012 .004 
 
2.86 3.1 x 10

-28
 

 
3.14 6.0 x 10

-33
 

 
3.22 4.1 x 10

-26
 

28.3 C3 (NRTN/FUT6)
 b
 rs12019136 0.92 19:5,835,677 G/A .036 .048 

 
0.71 2.4 x 10

-15
 

 
0.71 5.7 x 10

-15
 

 
0.74 4.0 x 10

-9
 

29 CNN2 rs67538026 0.83 19:1,031,438 C/T .460 .498 
 
0.90 2.6 x 10

-8
 

 
0.90 1.7 x 10

-8
 

 
0.90 1.4 x 10

-6
 

30.1 APOE rs429358 0.99 19:45,411,941 T/C .099 .135 
 
0.70 2.4 x 10

-42
 

 
... ... 

 
0.67 3.9 x 10

-39
 

30.2 APOE(EXOC3L2/MARK4)
b
 rs73036519 0.93 19:45,748,362 G/C .284 .302 

 
0.91 3.1 x 10

-7
 

 
0.90 4.6 x 10

-8
 

 
0.91 2.4 x 10

-5
 

31 MMP9 rs142450006 0.91 20:44,614,991 TTTTC/T .124 .141 
 
0.85 2.4 x 10

-10
 

 
... ... 

 
0.84 5.3 x 10

-9
 

32 C20orf85 rs201459901 0.98 20:56,653,724 T/TA .054 .070 
 
0.76 3.1 x 10

-16
 

 
... ... 

 
0.76 3.8 x 10

-12
 

33 SYN3/TIMP3 rs5754227 0.99 22:33,105,817 T/C .109 .137 
 
0.77 1.1 x 10

-24
 

 
... ... 

 
0.79 5.7 x 10

-16
 

34 SLC16A8 rs8135665 - 22:38,476,276 C/T .217 .195 
 
1.14 5.5 x 10

-11
 

 
1.14 1.1 x 10

-10
 

 
1.14 1.4 x 10

-8
 

a
 Independent signals within loci that were detected by sequential forward selection are indexed by their corresponding signal number, jointly analyzed regions (10 Mb 

regions) were sorted by position, while the signals (within each of the 10 Mb regions) are sorted according to their discovery by the sequential forward selection; 
b
 The 

peak of this independent association signal is located closer to genes in parenthesis than to the locus-defining genes;  
c
 Step-wise conditional analysis per 10Mb region; 

d
 Fully conditioned regression model including all 52 variants. 

e
 dbSNPID of the signal index variant. 

f
 Imputation quality 

for imputed variants.  
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Supplementary Table 5: Regions of the 34 AMD loci. We defined AMD locus regions by the independently associated variants (Supplementary 

Table 4), their proxies, r² 0.5 and added ± 500kb in order to catch far-reaching LD and potential rare variants missed by the r² criterion; overlapping 

regions were merged to define one joint locus with multiple signals.  

AMD locus region 
Merged LD intervals after adding +/- 500kb 

region 

 
Index variant 

 LD interval of farthermost variants with r2  0.5 to index variants 

Lower boundary  Upper boundary 

Locus name Chr Start End  Signal # dbSNP ID Position  dbSNP ID (r2) Position dbSNP ID (r2) Position 

CFH 1 195,679,832 197,768,053  1.1 rs10922109 196,704,632  rs1831282 (0.500) 196,673,993  rs6675769 (0.503) 196,941,661 
 1.2 rs570618 196,657,064  rs1329424 (0.990) 196,646,176  rs6428379 (0.557) 196,937,536 

 1.3 rs121913059 196,716,375  (= index variant)  (= index variant) 

 1.4 rs148553336 196,613,173  rs192646611 (0.503) 196,179,832  rs139686286 (0.591) 197,268,053 

 1.5 rs187328863 196,380,158  rs79524406 (0.962) 196,206,732  rs41314023 (0.691) 197,101,263 

 1.6 rs61818925 196,815,450  rs6695321 (0.652) 196,675,861  rs139124820 (0.559) 196,905,991 

 1.7 rs35292876 196,706,642  rs139452966 (0.631) 196,267,858  rs148050899 (0.844) 196,950,807 

 1.8 rs191281603 196,958,651  rs187073701 (0.522) 196,395,310  rs148448529 (0.808) 197,114,403 

COL4A3 2 227,573,015 228,592,110  2 rs11884770 228,086,920  rs13004766 (0.640) 228,073,015  rs13417485 (0.506) 228,092,110 

ADAMTS9-AS 3 64,199,445 65,230,121  3 rs62247658 64,715,155  rs4611812 (0.972) 64,699,445  rs17676309 (0.959) 64,730,121 

COL8A1 3 98,551,114 100,381,567  4.1 rs140647181 99,180,668  rs17823383 (0.591) 99,051,114  rs78245803 (0.535) 99,491,751 

 4.2 rs55975637 99,419,853  rs142158920 (0.514) 99,323,745  rs13074029 (0.509) 99,881,567 

CFI 4 110,126,506 111,185,820  5.1 rs10033900 110,659,067  rs7660005 (0.614) 110,626,506  (= index variant) 

 5.2 rs141853578 110,685,820  (= index variant)  (= index variant) 

C9 5 38,699,134 39,831,894  6 rs62358361 39,327,888  rs62358735 (0.776) 39,199,134  rs34882957 (0.998) 39,331,894 

PRLR/SPEF2 5 34,769,332 36,493,378  7 rs114092250 35,494,448  rs141424971 (0.705) 35,269,332  rs144746304 (0.560) 35,993,378 

C2/CFB/SKIV2L 6 30,505,490 33,238,589  8.1 rs116503776 31,930,462  rs149176277 (0.693) 31,894,355  (= index variant) 

 8.2 rs144629244 31,946,792  rs141397370 (0.501) 31,005,490  rs199858290 (0.539) 32,738,589 

 8.3 rs114254831 32,155,581  rs116246398 (0.568) 32,147,696  rs115393945 (0.564) 32,190,406 

 8.4 rs181705462 31,947,027  rs147277589 (0.505) 31,028,132  rs188309731 (0.512) 32,303,245 

VEGFA 6 43,305,296 44,329,629  9 rs943080 43,826,627  rs2094197 (0.622) 43,805,296  rs7742835 (0.635) 43,829,629 

KMT2E/SRPK2 7 104,081,402 105,563,372  10 rs1142 104,756,326  rs2470938 (0.620) 104,581,402  rs12535854 (0.681) 105,063,372 

PILRB/PILRA 7 99,394,940 100,611,776  11 rs7803454 99,991,548  rs113667434 (0.755) 99,894,940  rs7778181 (0.592) 100,111,776 
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AMD locus region 
Merged LD intervals after adding +/- 500kb 

region 

 
Index variant 

 LD interval of farthermost variants with r2  0.5 to index variants 

Lower boundary  Upper boundary 

Locus name Chr Start End  Signal # dbSNP ID Position  dbSNP ID (r2) Position dbSNP ID (r2) Position 

TNFRSF10A 8 22,582,971 23,588,984  12 rs79037040 23,082,971  (= index variant)  rs11777697 (0.758) 23,088,984 

MIR6130/RORB 9 75,935,160 77,189,752  13 rs10781182 76,617,720  rs1458496 (0.561) 76,435,160  rs1491451 (0.514) 76,689,752 

TRPM3 9 72,938,605 73,946,180  14 rs71507014 73,438,605  (= index variant)  rs10780973 (0.582) 73,446,180 

TGFBR1 9 101,358,102 102,431,769  15 rs1626340 101,923,372  rs11388918 (0.627) 101,858,102  rs334371 (0.503) 101,931,769 

ABCA1 9 107,139,414 108,167,147  16 rs2740488 107,661,742  rs4149274 (0.568) 107,639,414  rs2254708 (0.541) 107,667,147 

ARHGAP21 10 24,360,361 25,556,538  17 rs12357257 24,999,593  rs11014165 (0.886) 24,860,361  rs112276510 (0.507) 25,056,538 

ARMS2/HTRA1 10 123,702,126 124,735,355  18 rs3750846 124,215,565  rs58649964 (0.58) 124,202,126  rs2672587 (0.664) 124,235,355 

RDH5/CD63 12 55,615,585 56,713,297  19 rs3138141 56,115,778  rs3138142 (0.998) 56,115,585  rs56108400 (0.873) 56,213,297 

ACAD10 12 110,919,995 113,502,935  20 rs61941274 112,132,610  rs61943028 (0.633) 111,419,995  rs73209657 (0.760) 113,002,935 

B3GALTL 13 31,242,232 32,339,274  21 rs9564692 31,821,240  rs9539510 (0.531) 31,742,232  rs9572914 (0.878) 31,839,274 

RAD51B 14 68,227,506 69,550,783  22.1 rs61985136 68,769,199  rs1957569 (0.564) 68,727,506  rs1028577 (0.956) 68,815,261 

 22.2 rs2842339 68,986,999  rs61985769 (0.847) 68,973,917  rs56034765 (0.595) 69,050,783 

LIPC 15 58,171,721 59,242,418  23.1 rs2043085 58,680,954  rs1601934 (0.587) 58,671,721  rs409668 (0.502) 58,706,926 

 23.2 rs2070895 58,723,939  rs7170361 (0.507) 58,718,998  rs261336 (0.520) 58,742,418 

CETP 16 56,485,514 57,506,829  24.1 rs5817082 56,997,349  rs1864163 (0.988) 56,997,233  rs289713 (0.571) 57,006,829 

 24.2 rs17231506 56,994,528  rs72786786 (0.746) 56,985,514  rs1532624 (0.585) 57,005,479 

CTRB2/CTRB1 16 74,732,528 76,017,115  25 rs72802342 75,234,872  rs72802340 (0.702) 75,232,528  rs72789426 (0.539) 75,517,115 

TMEM97/VTN 17 26,092,946 27,240,139  26 rs11080055 26,649,724  rs241771 (0.522) 26,592,946  rs11869677 (0.674) 26,740,139 

NPLOC4/TSPAN10 17 79,015,509 80,186,552  27 rs6565597 79,526,821  rs56737642 (0.585) 79,515,509  rs11868178 (0.687) 79,686,552 

C3 19 5,311,717 7,224,340  28.1 rs2230199 6,718,387  rs2230203 (0.777) 6,710,782  rs163494 (0.749) 6,724,340 

 28.2 rs147859257 6,718,146  (= index variant)  (= index variant) 

 28.3 rs12019136 5,835,677  rs201167147 (0.731) 5,811,717  rs150092813 (0.716) 5,846,277 

CNN2 19 523,867 1,533,360  29 rs67538026 1,031,438  rs8102732 (0.766) 1,023,867  rs55725239 (0.544) 1,033,360 

APOE 19 44,892,254 46,313,830  30.1 rs429358 45,411,941  rs6857 (0.683) 45,392,254  rs66626994 (0.603) 45,428,234 

 30.2 rs73036519 45,748,362  rs346751 (0.511) 45,734,433  rs2377326 (0.596) 45,813,830 

MMP9 20 44,114,991 45,160,699  31 rs142450006 44,614,991  (= index variant)  rs3859613 (0.517) 44,660,699 

C20orf85 20 56,084,276 57,174,034  32 rs201459901 56,653,724  rs77125533 (0.503) 56,584,276  rs874430 (0.583) 56,674,034 

SYN3/TIMP3 22 32,546,536 33,613,375  33 rs5754227 33,105,817  rs4373007 (0.559) 33,046,536  rs16991084 (0.553) 33,113,375 

SLC16A8 22 37,795,271 39,003,972  34 rs8135665 38,476,276  rs2010472 (0.563) 38,295,271  rs56076229 (0.579) 38,503,972 
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Supplementary Table 6. Results of the 34 AMD lead variants in individuals of Non-European ancestry. We computed frequencies and advanced AMD 

association in an Asian (473 cases, 1,099 controls), African (52 cases, 361 controls), and “other ancestry” group (254 cases, 694 controls) for our 34 lead 

variants. Shown are association results (frequencies, Odds Ratios into the direction of the minor allele in European controls) in these three ancestry groups, 

re-stating association in the European analysis for comparability (16,144 cases, 17,832 controls). The “other ancestry” group is comprised of subjects with no 

distinct assignment to a specific ancestry group. Extended results can be found in Supplementary File 2.  

Locus name Lead variant 

European  
major/ 
minor  
allele 

Frequency of minor allele* 
________________________________________________ 

Odds Ratio 
______________________________________ 

Non-
European 

cases 

Asian 
controls 

African 
controls 

“Other”  
controls 

Non-
European 
controls 

   
European 
controls 

 Asian African “Other”  
Non-

European 
European 

CFH rs10922109 C/A 0.344 0.583 0.540 0.510 0.552    0.426  0.43 0.80 0.44 0.45 0.38 

COL4A3 rs11884770 C/T 0.273 0.260 0.468 0.352 0.324    0.278  0.83 1.01 1.00 0.90 0.90 

ADAMTS9/AS2 rs62247658 T/C 0.752 0.823 0.848 0.748 0.803    0.433  0.88 0.76 0.80 0.81 1.14 

COL8A1 rs140647181 T/C 0.008 0.001 0.001 0.014 0.006    0.016  4.36 0.62 1.00 1.16 1.59 

CFI rs10033900 C/T 0.593 0.684 0.373 0.478 0.565    0.477  0.91 0.80 1.29 0.95 1.15 

C9 rs62358361 G/T 0.001 0 0.001 0.004 0.002    0.009  NA 2.81 0.69 0.70 1.80 

PRLR/SPEF2 rs114092250 G/A 0.003 0.000 0.004 0.005 0.002    0.021  6.60 0.81 1.77 1.57 0.70 

C2/CFB/SKIV2L rs116503776 G/A 0.088 0.127 0.213 0.182 0.159    0.148  0.48 1.11 0.63 0.60 0.57 

VEGFA rs943080 T/C 0.286 0.326 0.161 0.321 0.297    0.497  0.87 1.10 0.78 0.84 0.88 

KMT2E/SRPK2 rs1142 C/T 0.342 0.366 0.239 0.289 0.320    0.346  0.94 0.99 1.25 1.04 1.11 

PILRB/PILRA rs7803454 C/T 0.064 0.018 0.037 0.120 0.054    0.190  1.00 0.72 1.00 1.08 1.13 

TNRSF10B rs79037040 T/G 0.569 0.619 0.857 0.647 0.668    0.479  0.80 0.59 0.79 0.80 0.90 

TRPM3 rs71507014 GC/G 0.558 0.581 0.554 0.524 0.558    0.306  1.04 0.92 1.00 0.99 1.10 

MIR6130/RORB rs10781182 G/T 0.581 0.544 0.829 0.575 0.602    0.405  1.09 1.03 1.19 1.12 1.11 

TGFBR1 rs1626340 G/A 0.371 0.449 0.304 0.266 0.366    0.209  1.04 0.73 0.85 0.97 0.88 

ABCA1 rs2740488 A/C 0.282 0.327 0.401 0.345 0.345    0.275  0.76 0.64 1.01 0.79 0.90 

ARHGAP21 rs12357257 G/A 0.093 0.034 0.118 0.147 0.084    0.223  0.89 0.67 1.17 1.14 1.11 

ARMS2/HTRA1 rs3750846 T/C 0.569 0.387 0.212 0.246 0.312    0.208  2.83 2.16 2.28 2.60 2.81 

RDH5/CD63 rs3138141 C/A 0.110 0.103 0.025 0.110 0.092    0.207  0.79 1.11 1.57 1.05 1.16 
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Locus name Lead variant 

European  
major/ 
minor  
allele 

Frequency of minor allele* 
________________________________________________ 

Odds Ratio 
______________________________________ 

Non-
European 

cases 

Asian 
controls 

African 
controls 

“Other”  
controls 

Non-
European 
controls 

   
European 
controls 

 Asian African “Other”  
Non-

European 
European 

ACAD10 rs61941274 G/A 0.006 0.002 0.003 0.007 0.004    0.018  - 1.91 2.94 2.46 1.51 

B3GALTL rs9564692 C/T 0.626 0.746 0.443 0.443 0.598    0.299  0.93 1.35 1.12 0.98 0.89 

RAD51B rs61985136 T/C 0.591 0.495 0.844 0.584 0.582    0.384  1.49 0.85 0.91 1.30 0.90 

LIPC rs2043085 T/C 0.500 0.505 0.645 0.516 0.532    0.381  1.02 0.99 1.07 0.99 0.87 

CETP rs5817082 C/CA 0.191 0.108 0.593 0.354 0.269    0.264  0.77 0.87 1.02 0.92 0.84 

CTRB2 rs72802342 C/A 0.077 0.093 0.013 0.053 0.067    0.080  1.06 2.43 0.83 0.98 0.79 

TMEM97/VTN rs11080055 C/A 0.308 0.361 0.433 0.454 0.403    0.486  0.63 0.86 0.87 0.69 0.91 

NPLOC4/TSPAN10 rs6565597 C/T 0.221 0.117 0.214 0.235 0.171    0.381  1.54 1.57 1.26 1.54 1.13 

C3 rs2230199 C/G 0.060 0.009 0.056 0.107 0.048    0.208  0.65 1.90 1.22 1.38 1.43 

CNN2 rs67538026 C/T 0.604 0.835 0.188 0.401 0.587    0.498  1.05 0.94 0.68 0.86 0.90 

APOE rs429358 T/C 0.094 0.135 0.219 0.167 0.159    0.135  0.57 0.59 0.88 0.61 0.70 

MMP9 rs142450006 TTTTC/T 0.116 0.116 0.068 0.106 0.105    0.141  0.93 0.43 1.12 0.99 0.85 

C20orf85 rs201459901 T/TA 0.023 0.007 0.014 0.040 0.019    0.070  0.41 2.66 1.13 1.17 0.76 

SYN3/TIMP3 rs5754227 T/C 0.509 0.531 0.533 0.362 0.477    0.137  1.39 1.05 0.78 1.19 0.85 

SLC16A8 rs8135665 C/T 0.166 0.148 0.343 0.274 0.222    0.195  0.71 0.78 1.08 0.84 1.14 

* Major and minor allele in European Controls; NA = not applicable due to the variant being monomorph in this group. 
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Supplementary Table 7: Credible sets of variants per independent signal. Stated are the 95% credible sets of variants for those of the 52 

independent signals that contain ≤ 5 variants (for a full list of 95% credible sets, see Supplementary File 3) using a Bayesian approach21; for loci with 

multiple signals, the association conditioned on the other signals in the loci was computed before estimating the Bayes Factor. Assuming that each signal 

has exactly one causal variant and this is contained in our data, such credible sets contain the causal variant with 95% probability. In parentheses, the 

posterior probability of each variant (add up to ≥ 95% per row by design) and the amino acid exchange (bold, if applicable). 

Locus name Signal 
number 

Index  
variant 

95% credible sets 

# 
Variants 

Variant (posterior probability; amino acid exchange, if applicable) 

CFH 1.3* rs121913059 3 rs121913059 (0.899, R1210C), rs7540032 (0.0272), rs7514261 (0.0267) 

 1.4* rs148553336 3 rs148553336 (0.634), rs139017763 (0.268, G278S), rs182780863 (0.0806) 

CFI 5.1* rs10033900 1 rs10033900 (0.999) 

 5.2* rs141853578 1 rs141853578 (0.996, G119R) 

C9 6 rs62358361 2 rs62358361 (0.551), rs34882957 (0.447, P167S) 

C2/CFB/SKIV2L 8.1* rs116503776 1 rs116503776 (1) 

 8.3* rs114254831 4 rs114254831 (0.738), rs114764276 (0.107), rs116820884 (0.0975), rs115219661 (0.0443) 

VEGFA 9 rs943080 4 rs943080 (0.424), rs7758685 (0.271), rs4711751 (0.22), rs1536304 (0.0556) 

TNFRSF10A 12 rs79037040 1 rs79037040 (0.983) 

ABCA1 16 rs2740488 3 rs2740488 (0.738), rs2575876 (0.158), rs1883025 (0.0666) 

RDH5/CD63 19 rs3138141 3 rs3138141 (0.498), rs3138142 (0.401, I141I), rs56108400 (0.0943) 

LIPC 23.1* rs2043085 2 rs2414577 (0.49), rs2414578 (0.477) 

 23.2* rs2070895 5 rs2070895 (0.339), rs1800588 (0.303), rs1077835 (0.132), rs1077834 (0.131), rs35980001 (0.052) 

C3 28.1* rs2230199 1 rs2230199 (0.983, R102G) 

 28.2* rs147859257 1 rs147859257 (1, K155Q) 

 28.3* rs12019136 5 rs12019136 (0.538), rs17855739 (0.212, E247K), rs78060698 (0.0876), rs79744308 (0.0815, 
A59T), rs7255720 (0.0642, R158R) 

APOE 30.1* rs429358 1 rs429358 (1, C130R) 

SYN3/TIMP3 33 rs5754227 4 rs5754227 (0.717), rs7289865 (0.183), rs5754222 (0.039), rs11379058 (0.0381) 

SLC16A8 34 rs8135665 4 rs8135665 (0.643), rs11089861 (0.271), rs742398 (0.0248), rs144402192 (0.0207) 

* For each locus with multiple signals (identified by sequential forward selection and LD analysis) we calculated their independent association 
signals by adding the other variants of that locus as covariate to the model before estimating the Bayes Factor 
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Supplementary Table 8: Non-synonymous variants in 95% credible sets. We derived 95% credible sets of variants for each of the 52 

independent signals. Stated are the non-synonymous variants among these variants that reach ≥ 5% posterior probability (for a full list of 

variants in 95% credible sets, see Supplementary File 3). Shown are Odds Ratios (OR) and P-values from the locus-wide conditioned 

analysis (adjusting for the identified index variant(s) in the locus); these were used to compute the Bayes factor (not shown) and the posterior 

probability. References are given for studies that first described the association between of these non-synonymous variants and the risk for 

AMD. 

Locus Name 
Locus 
# 

Variant in 
credible set 

Chr:Position 
Major / 
minor 
allele 

Gene Role 
CADD 
Score* 

MAF 
OR P 

Post. 
prob 

Ref. 
Cases Controls 

CFH 1.3* rs121913059 1:196,716,375 C/T CFH R1210C 15.48 0.00319 0.00014 31.8 3.2x10
-31

 89.9% 
30

 
1.4* rs139017763 1:196,965,193 G/A CFHR5 G278S 16.16 0.00246 0.00858 0.32 1.9x10

-18
 26.8% 

31
 

CFI 5.2* rs141853578 4:110,685,820 C/T CFI G119R 13.88 0.00288 0.000786 3.87 8.6x10
-11

 99.6% 
31,32

 
C9 6 rs34882957 5:39,331,894 G/A C9 P167S 19.88 0.0156 0.00871 1.79 1.6x10

-14
 44.7% 

31
  

C2/CFB/SKIV2L 8.2* rs114190211 6:31,929,737 C/T SKIV2L R324W 18.24 0.0163 0.012 2.59 3.9x10
-37

 8.6% new 
ARMS2/HTRA1 18 rs10490924 10:124,214,448 G/T ARMS2 A69S 8.897 0.436 0.208 2.81 1.9x10

-734
 9.4% 

18,19
 

C3 28.1* rs2230199 19:6,718,387 C/G C3 R102G 7.214 0.266 0.208 1.45 7.9x10
-74

 98.3% 
8
 

28.2* rs147859257 19:6,718,146 T/G C3 K155Q 9.992 0.0124 0.00432 3.12 1.5x10
-32

 100% 
22,31,33

 
28.3* rs17855739 19:5,831,840 C/T FUT6 E247K 16.35 0.0376 0.0494 0.72 1.6x10

-14
 21.2% new 

rs79744308 19:5,827,765 G/A NRTN A59T 15.14 0.0354 0.0463 0.71 4.3x10
-14

 8.2% new 
APOE 30.1 rs429358 19:45,411,941 T/C APOE C130R 0.007 0.0993 0.135 0.70 3.7x10

-43
 100% 

34,35
 

MAF = minor allele frequency, Ref. = Reference; post. prob. = posterior probability; * CADD, Combined Annotation Dependent Depletion (CADD) 
scores combine the generality of conservation-based metrics with the specificity of subset-relevant functional metrics to estimate the variants’ 
relative pathogenicity (36, http://cadd.gs.washington.edu; ranging from 1 to 99).  

http://cadd.gs.washington.edu/
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Supplementary Table 9: Results of the rare variant burden analysis without and with conditioning on nearby identified variants. We 

computed the gene-based burden test based on rare protein altering variants comparing the 16,144 advanced AMD cases versus 17,832 controls 

using the Variable Threshold test. Stated are the 14 genes with significant burden (P < 0.05/703 = 7.1 x 10-5) among the 703 genes in the 34 AMD 

loci (defined by 52 identified variants, proxies, r2 > 0.5, ± 500 kb); the 703 genes are those among the 17,044 coding RefSeq genes that overlap 

with the 34 loci and contain at least one rare protein altering variants. When conditioning on the identified index variant(s) in the same locus (locus-

wide conditioning), many of the burden results disappear implying that the initial signal was a shadow effect of the common variant; for four genes, 

CFI, TIMP3, CFH and SLC16A8, the rare variant burden remains significant after locus-wide conditioning (bold). Rare variants are defined as MAF 

< 1% in each ancestry group (European, African, and Asian); protein altering variants are defined as non-synonymous variants (missense, stop 

loss, in-frame insertion/deletion, frameshift, premature stop codon) or splice sites. More details are given in Supplementary File 4.  

Gene 
# variants in 

analysis  

Unconditioned  Locus-wide conditioned 

Optimal 
RAC 

# Variants with  
MAC ≤ optimal 

RAC 

Effect 
directiona 

P  
Optimal 

RAC 

# Variants with  
MAC ≤ optimal 

RAC 

Effect  
directiona 

P 

CFI 47 121 44 + 1.0 x 10-8  46 43 + 1.0 x 10-8 

TIMP3 10 14 9 + 2.0 x 10-8  14 9 + 9.0 x 10-8 

CFH 49 108 47 + 1.0 x 10-8  10 37 + 1.2 X 10-6 

SLC16A8 9 648 9 + 2.3 x 10-5  648 9 + 3.1 x 10-6 

F13B 10 249 9 + 1.7 x 10-5  33 8 + 0.0024 

DXO 14 446 14 + 3.1 x 10-5  446 14 + 0.012 

CFHR4 12 293 12 - 1.0 x 10-8  24 9 + 0.028 

CFB 15 135 15 + 4.0 x 10-5  135 15 + 0.07 

KCNT2 9 207 9 - 6.0 x 10-7  9 7 + 0.12 

ATF6B 21 394 21 + 6.8 x 10-5  21 21 + 0.13 

CFHR2 6 413 6 - 2.0 x 10-8  2 3 + 0.15 

ASPM 68 634 68 - 1.0 x 10-8  4 24 + 0.37 

C3 52 553 52 + 1.0 x 10-8  69 49 + 0.37 

CFHR5 26 376 25 - 1.0 x 10-8  1 10 + 0.41 

RAC: risk allele count among cases and controls; MAC: minor allele count among cases and control; MAF = minor allele frequency 
a “+” indicates an AMD risk increasing by the accumulated rare variants, and “–“ an AMD risk decreasing burden. 
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Supplementary Table 10. Enriched pathways for genes in the 34 AMD loci. We queried pathway databases (Reactome, GO, KEGG) using INRICH for the 

368 genes in the 34 narrow AMD locus regions (identified 52 variants and proxies, r2≥0.5, ±100kb, see Methods). Shown are the enriched pathways (corrected 

P<0.10, analyzing known and novel AMD loci); P-values, and the genes contributing to the enrichment (those in novel AMD loci in bold letters). 

Data-
base 

Pathway 
#genes 
in gene 

set 

Known AMD loci Known and novel AMD loci 
Genes contributing to enrichment (those in 

novel AMD loci in bold) #loci in 
gene set 

Empiri-
cal P 

Correc-
ted P 

a 
#loci in 

gene set 
Empiri-
cal P 

Correc-
ted P 

a 

Reac-
tome 

Complement Pathways         

 Regulation of Complement Cascade 22 5 1.0 x 10
-6 

4.3 x 10
-4 

6 (5+1) 1.0 x 10
-6 

2.8 x 10
-4

 C2/C4A/C4B/CFB, C3, C9, CFH/CFHR3, CFI, VTN 

 Complement Cascade 36 5 5.0 x 10
-6 

0.0013 6 (5+1) 1.0 x 10
-6 

2.8 x 10
-4 C2/C4A/C4B/CFB, C3, C9, CFH/CFHR3, CFI, VTN 

 Collagen Pathways         

 Assembly of Collagen Fibrils & 
Other Multimeric Structures 

54 3 0.0011 0.11 6 (3+3) 1.0 x 10
-6 

2.8 x 10
-4

 COL15A1, COL8A1, LOXL2, COL4A3/COL4A4, 
MMP9, PCOLCE 

 Collagen Formation 84 3 0.0061 0.31 6 (3+3) 3.9 x 10
-5 

0.0081 COL15A1, COL8A1, LOXL2, COL4A3/COL4A4, 
MMP9, PCOLCE 

 Lipid Pathways         

 Lipoprotein Metabolism 30 3 5.4 x 10
-4 

0.065 5 (3+2) 2.0 x 10
-5 

0.0041 APOC2/APOE, CETP, LIPC, ABCA1, PLTP 

 HDL-Mediated Lipid Transport 15 2 n/a
 b
 n/a

 b
 4 (2+2) 1.1 x 10

4 
0.024 APOC2/APOE, CETP, ABCA1, PLTP 

 Lipid Digestion, Mobilization, and 
Transport 

50 3 0.0016 0.14 5 (3+2) 2.3 x 10
-4 

0.045 APOC2/APOE, CETP, LIPC, ABCA1, PLTP 

GO Complement Pathways         

 Regulation of Complement 
Activation 

a
 

24 5 2.0 x 10
-6 

0.0034 6 (5+1) 1.0 x 10
-6 

0.0024 C2/C4A/C4B/CFB, C3, C9, CFH, CFI, VTN 

 Lipid Pathways         

 High-Density Lipoprotein Particle 
b
 22 4 8.2 x 10

-5 
0.067 5 (4+1) 4.4 x 10

-5 
0.055 APOC1/APOC4/APOE, APOM, CETP, LIPC, 

ABCA1 

 Reverse Cholesterol Transport 
c
 18 4 9.6 x 10

-5 
0.074 5 (4+1) 3.8 x 10

-5 
0.048 APOC2/APOE, APOM, CETP, LIPC, ABCA1 

 Phospholipid Transporter Activity 
d
 7 1 n/a

 b
 n/a

 b
 3 (1+2) 8.7 x 10

-5
 0.097 CETB, ABCA1, ABCA7 

 Extracellular Matrix Pathways         

 Extracellular Matrix 
e
 185 7 7.9 x 10

-5
 0.064 10 

(7+3) 
1.1 x 10

-5
 0.015 ADAMTS9, APOE, COL15A1, COL8A1, HTRA1, 

TIMP3, TNXB, MMP19, PCOLCE, VTN 

 Others         

 Receptor-Mediated Endocytosis 
f
 126 8 1.0 x 10

-6
 0.0020 9 (8+1) 4.0 x 10

-6
 0.0064 APOE, CETP, CFI, DAB2, DMBT1, HSPH1, 

LOXL2, MICALL1, VTN 

 Positive Regulation of Neuroblast 
Proliferation 

g
 

20 3 1.4 x 10
-4

 0.10 4 (3+1) 2.2 x 10
-5

 0.029 ASPM, SOX10, VEGFA, ZNF335 

 Endodermal Cell Differentiation 
h
 27 1 n/a

 b
 n/a

 b
 4 (1+3) 4.0 x 10

-5
 0.050 COL8A1, ITGA7, MMP9, VTN 

KEGG Extracellular Matrix Pathways         
 Focal Adhesion

 j
 197 3 0.21 0.89 9 (3+6) 3.0 x 10

-4
 0.016 TNXB, VAV1, VEGFA, ACTG1, BCAR1, 

COL4A4, ITGA7, MYL2, VTN 
a
 GO:0030449, 

b
 GO:0034364, 

c
 GO:0043691, 

d
 GO:0005548, 

f
 GO:0031012, 

g
 GO:0006898, 

h
 GO:0002052, 

j
 GO:0035987 
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Supplementary Table 11: Biology of the 16 genes with highest priority per novel AMD locus. For the 

16 genes with top gene score priority (see Fig. 2A) in 15 novel AMD loci (one novel locus with two genes of 

equal priority, one without any gene), manual literature search reveals interesting biology (evidence for 

relevant mouse phenotype in bold), except for C20orf85 and SRPK2.  

Gene 
Name 

Description 

COL4A3 Type 4 collagen, mutations in which cause a form of Alport’s Syndrome, a basement 
membrane disorder. Approximately 85% of patients with Alport’s also report a flecked retina, 
likely due to changes in the pigmentation of Bruchs’ membrane. Knockout mice reported for 
abnormal retinal morphology and aging (MGI:104688). 

SPEF2 Sperm flagellar protein 2 plays an important role in sperm motility and fertility. Chemically 
induced ENU mutant mice show aberrations in the immune, craniofacial, mortality/aging, 
nervous, reproductive, respiratory and skeletal systems, and this mouse serves as a model 
system for primary ciliary dyskinesia.  

SRPK2 No link to eye phenotype for the Protein Kinase, serine/arginine-specific, a gene involved in 
pre-mRNA splicing, a critical step in the posttranscriptional regulation of gene expression. 

PILRB Paired immunoglobulin-like type 2 receptor β, related to the Siglec family of receptors, and 
plays a key activating role in immune function and inflammation. Gene expression increases 
with age.  

TRPM3 Transient receptor potential cation channel, subfamily M, receptor 3, is a heat sensor in 
sensory neurons. Mutations in this gene cause inherited cataract and Glaucoma. TRPM3 and 
TRPM1 mouse models show phenotypes associated with pupillary light response37. 

ABCA1 ATP Binding Cassette, Subfamily A, Member 1 is an ABC transporter that acts together with 
APOA1 in HDL efflux. It is involved in A2E catabolism in photoreceptors and was reported for 
association with intra-ocular pressure and open Glaucoma38-40. Mutations in the gene cause 
Tangier Disease (OMIM: 205400), an accumulation of cholesterol in tissues due to reduced 
plasma HDL levels. ABCA1 is expressed in the macular ganglion cell layer, in the outer 
plexiform layer, and in RPE.  

ARHGAP21 Rho GTPase activating protein 21 regulates the small GTPase CDC42 and is involved in golgi 
complex organization. May play an important role in retinal cilia, with retinopathy being a 
recurrent occurrence in ciliopathies.  

MMP19 Matrix metalloproteinase 19 is a member of the endopeptidase family, which is involved in 
extracellular matrix degradation. Extracellular matrix turnover is mediated through a careful 
balance of tissue inhibitors of metalloproteinases (TIMPs) and MMPs. MMP19 has an 
important role in angiogenesis.    

RDH5 The Retinol dehydrogenase 5 microsomal enzyme is abundant in RPE, where it has been 
proposed to catalyze the conversion of 11-cis retinol to 11-cis retinal41 and involve RPE and 
Muller cells of retina. Mutations in this gene cause fundus albipunctatus42, a rare form of night 
blindness characterized by a delay in generating cone and rod photopigments (NCBI). RDH5 is 
a drug target for NADH discussed as therapy for Parkinson’s and Alzheimer disease. An RDH5 
mouse model (MGI:1201412) shows impaired dark adaptation43, is a disease model for 
fundus albipunctatus, and causes AMD-like pathology44. 

PTPN11 The Protein-Tyrosin Phosphatase, Non-receptor11 gene exhibits numerous mutations causing 
the Noonan syndrome, a developmental disorder affecting multiple organs. PTPN11 is widely 
expressed in most tissues and plays a regulatory role in various cell functions. A PTPN11 
mouse model (MGI: 99511) shows a phenotype associated with the cardiovascular, 
immune, and hematopoietic system and mortality/aging. 

BCAR1 Breast Cancer Antiestrogen Resistance 1 is an Src family kinase substrate involved in various 
cellular events, including migration, survival, transformation, and invasion45. Insertion in BCAR1 
resulted in the tamoxifen-resistance for breast cancer therapy. A BCAR1 mouse model 
affects the formation of the retinal ganglion cell layer46. 
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VTN Vitronectin is a tyrosine sulphated protein present in the RPE, among other cell types in 
the retina.  It plays an important function in complement regulation, being an inhibitor of the 
complement cascade. Vitronectin and complement proteins are major components of 
drusen. 

TSPAN10 Tetraspanin 10, also known as oculospanin, is expressed in the RPE, iris, ciliary body and 
retinal ganglion cells, but its function is not well described.  

GPX4 Glutathione peroxidase 4 reduces phospholipid hydroperoxides within membranes and 
lipoproteins. Lipid peroxidation is implicated in inflammation and atherogenesis. 
Transgenic mice overexpressing human GPX4 show reduced oxidative injury after 
oxidative stress.  

MMP9 Matrix metalloproteinase 9 is also a member of the endopeptidase family, and has an 
important role in extracellular matrix remodeling in angiogenesis. Double knockouts of 
MMP2 and MMP9 show an important role in CNV47, and provides a disease model for 
complement factor I deficiency and inflammatory/immunologic defect. 

C20orf85 Chromosome 20 open reading frame 85 is uncharacterized, has Gene Priority Score 0, but 
only gene in this region. 

RPE: Retinal pigment epithelium 
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Supplementary Table 12: Four of the 34 lead variants show difference between advanced AMD 

subtypes. We compared the two advanced AMD subtypes, CNV and GA. Stated are Odds Ratios (OR) 

and P-values analyzing 10,749 CNV patients and 17,832 control subjects, 3,235 patients with GA 

compared to the same 17,832 control subjects, as well as the P-values testing the 10,749 CNV patients 

against the 3,235 GA patients. Four variants show a significant difference between disease subtypes (Pdiff < 

0.05/34 = 0.00147; rs3750846, rs5817082, rs14245000, rs5754227 in the loci ARMS2/HTRA1, CETP, 

MMP9, SYN3/TIMP3, marked bold). ORs are given into the direction of the minor allele in controls subjects.  

Locus  
Name 

Lead variant Major/ 
minor 
allele 

MAF 
-------------------------------- 

CNV vs Co.
a 

-------------------------------------
 

GA vs. Co
b 

----------------------------------------
 

CNV vs 
GA

c
 

  CNV GA Co OR P OR P Pdiff 

CFH rs10922109 C/A 0.228 0.217 0.426 0.39 4.6x10
-457

 0.37 3.7x10-
220

 0.22 
COL4A3 rs11884770 C/T 0.258 0.262 0.278 0.90 2.6 x 10

-7
 0.93 1.9 x 10

-2
 0.26 

ADAMTS9-AS2 rs62247658 T/C 0.469 0.450 0.433 1.14 4.5 x 10
-12

 1.09 2.1 x 10
-3

 0.12 
COL8A1 rs140647181 T/C 0.023 0.019 0.016 1.64 7.2 x 10

-11
 1.32 2.0 x 10

-2
 0.052 

CFI rs10033900 C/T 0.508 0.508 0.477 1.14 7.1 x 10
-12

 1.13 7.2 x 10
-6

 0.84 
C9 rs62358361 G/T 0.016 0.015 0.009 1.73 3.1 x 10

-10
 2.06 1.2 x 10

-9
 0.10 

SPEF2 rs114092250 G/A 0.015 0.018 0.022 0.69 6.8 x 10
-7

 0.66 2.2 x 10
-4

 0.76 
C2/CFB/SKIV2L rs116503776 G/A 0.092 0.092 0.148 0.59 1.4 x 10

-72
 0.58 5.9 x 10

-34
 0.90 

VEGFA rs943080 T/C 0.465 0.463 0.497 0.88 2.0 x 10
-11

 0.87 7.0 x 10
-7

 0.65 
KMT2E/SRPK2 rs1142 C/T 0.211 0.207 0.346 1.13 1.4 x 10

-9
 1.07 2.2 x 10

-2
 0.12 

PILRB/PILRA rs7803454 C/T 0.373 0.362 0.190 1.14 4.1 x 10
-8

 1.11 1.8 x 10
-3

 0.62 
TNFRSF10A rs79037040 T/G 0.449 0.459 0.479 0.89 1.8 x 10

-9
 0.92 2.0 x 10

-3
 0.39 

TRPM3 rs71507014 GC/G 0.429 0.421 0.405 1.11 8.3 x 10
-8

 1.07 1.8 x 10
-2

 0.29 
MIR6130/RORB rs10781182 G/T 0.330 0.319 0.306 1.12 5.5 x 10

-8
 1.07 2.5 x 10

-2
 0.19 

TGFBR1 rs1626340 G/A 0.187 0.199 0.209 0.87 1.7 x 10
-9

 0.94 5.4 x 10
-2

 0.037 
ABCA1 rs2740488 A/C 0.257 0.252 0.275 0.90 2.4 x 10

-6
 0.89 1.9 x 10

-4
 0.58 

ARHGAP21 rs12357257 G/A 0.244 0.239 0.223 1.12 3.4 x 10
-7

 1.11 2.4 x 10
-3

 0.71 
ARMS2/HTRA1 rs3750846 T/C 0.447 0.384 0.208 2.95 3.1x10

-632
 2.33 3.6x10

-173
 1.0 x 10

-17
 

RDH5/CD63 rs3138141 C/A 0.221 0.223 0.207 1.16 5.2 x 10
-7

 1.16 4.1 x 10
-4

 0.88 
ACAD10 rs61941274 G/A 0.024 0.023 0.018 1.57 2.3 x 10

-9
 1.42 1.8 x 10

-3
 0.35 

B3GALTL rs9564692 C/T 0.279 0.267 0.299 0.90 2.5 x 10
-7

 0.86 2.1 x 10
-6

 0.23 
RAD51B rs61985136 T/C 0.361 0.361 0.384 0.89 1.0 x 10

-8
 0.91 1.8 x 10

-3
 0.37 

LIPC rs2043085 T/C 0.353 0.356 0.381 0.87 2.7 x 10
-12

 0.89 2.7 x 10
-5

 0.54 
CETP rs5817082 C/CA 0.228 0.250 0.264 0.82 6.0 x 10

-19
 0.93 2.3 x 10

-2
 3.2 x 10

-4
 

CTRB2/CTRB1 rs72802342 C/A 0.065 0.071 0.080 0.77 1.3 x 10
-11

 0.85 4.4 x 10
-3

 0.083 
TMEM97/VTN rs11080055 C/A 0.459 0.472 0.486 0.90 8.8 x 10

-9
 0.94 3.3 x 10

-2
 0.099 

NPLOC4/TSPAN
10 

rs6565597 C/T 0.404 0.385 0.381 1.15 2.1 x 10
-11

 1.05 0.10 0.0080 

C3 rs2230199 C/G 0.465 0.453 0.208 1.39 7.3 x 10
-47

 1.53 7.2 x 10
-37

 0.0047 
CNN2 rs67538026 C/T 0.262 0.279 0.498 0.91 7.3 x 10

-6
 0.90 8.2 x 10

-4
 0.74 

APOE rs429358 T/C 0.102 0.099 0.135 0.73 7.2 x 10
-28

 0.69 2.4 x 10
-16

 0.38 
MMP9 rs142450006 TTTTC

/T 
0.116 0.144 0.141 0.78 8.4 x 10

-17
 1.04 0.39 4.1 x 10

-10
 

C20orf85 rs201459901 T/TA 0.054 0.057 0.070 0.74 2.5 x 10
-14

 0.82 5.4 x 10
-4

 0.12 
SYN3/TIMP3 rs5754227 T/C 0.106 0.121 0.137 0.75 2.5 x 10

-24
 0.88 3.4 x 10

-3
 3.8 x 10

-4
 

SLC16A8 rs8135665 C/T 0.216 0.217 0.195 1.13 5.1 x 10
-8

 1.14 9.3 x 10
-5

 0.87 

MAF = minor allele frequency, Co = control subjects; a Association in CNV versus controls; b Association in 
GA versus controls; c Association in CNV versus GA  
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Supplementary Table 13: Many but not all of the 34 lead variants show association with intermediate 

AMD. We compared the intermediate stage AMD patients with the advanced AMD patients. Stated are 

Odds Ratios (into the direction of the minor allele in controls) and P-values for the association of the 34 lead 

variants analysing 6,657 subjects with intermediate AMD and 17,832 control subjects of European ancestry, 

the re-stated Odds Ratios and P-value for advanced AMD and the P-value testing for difference of the 

variant association testing the 6,657 intermediate versus the 16,144 advanced AMD patients (Pdiff). 

Locus name Lead variant Major/
minor 
allele

a
 

Allele  
frequency of 

control minor allele 

Int. AMD vs. 
Co.

b
 

Adv. AMD vs. 
Co.

c
 

Int. vs. 
Adv. AMD

d
 

  Int. 
AMD 

Adv. 
AMD 

Co OR P OR P Pdiff 

CFH rs10922109 C/A 0.315 0.223 0.426 0.62 1.3x10
-109

 0.38 9.6x10
-618

 1.36 x 10
-84

 
COL4A3 rs11884770 C/T 0.263 0.258 0.278 0.92 5.8 x 10

-4
 0.90 2.9 x 10

-8
 0.39 

ADAMTS9/AS2 rs62247658 T/C 0.444 0.466 0.433 1.03 0.13 1.14 1.8 x 10
-14

 1.0 x 10
-5

 
COL8A1 rs140647181 T/C 0.017 0.023 0.016 1.11 0.28 1.59 1.4 x 10

-11
 3.1 x 10

-5
 

CFI rs10033900 C/T 0.495 0.511 0.477 1.12 5.6 x 10
-8

 1.15 5.4 x 10
-17

 0.25 
C9 rs62358361 G/T 0.013 0.016 0.009 1.52 2.8 x 10

-5
 1.80 1.3 x 10

-14
 0.058 

PRLR/SPEF2 rs114092250 G/A 0.021 0.016 0.022 0.95 0.48 0.70 2.1 x 10
-8

 3.1 x 10
-4

 
C2/CFB/SKIV2L rs116503776 G/A 0.113 0.090 0.148 0.74 3.2 x 10

-21
 0.57 1.2x10

-103
 9.4 x 10

-14
 

VEGFA rs943080 T/C 0.478 0.465 0.497 0.93 3.2 x 10
-4

 0.88 1.1 x 10
-14

 0.011 
KMT2E/SRPK2 rs1142 C/T 0.358 0.370 0.346 1.06 8.5 x 10

-3
 1.11 1.4 x 10

-9
 0.031 

PILRB/PILRA rs7803454 C/T 0.200 0.209 0.190 1.06 0.020 1.13 4.8 x 10
-9

 0.026 
TNFRSF10A rs79037040 T/G 0.458 0.451 0.479 0.92 1.2 x 10

-4
 0.90 4.5 x 10

-11
 0.16 

TRPM3 rs71507014 GC/G 0.417 0.427 0.405 1.05 0.016 1.10 3.0 x 10
-8

 0.046 
MIR6130/RORB rs10781182 G/T 0.312 0.328 0.306 1.03 0.26 1.11 2.6 x 10

-9
 6.8 x 10

-4
 

TGFBR1 rs1626340 G/A 0.211 0.189 0.209 1.01 0.65 0.88 3.8 x 10
-10

 2.2 x 10
-7

 
ABCA1 rs2740488 A/C 0.257 0.255 0.275 0.91 5.9 x 10

-5
 0.90 1.2 x 10

-8
 0.71 

ARHGAP21 rs12357257 G/A 0.235 0.243 0.223 1.06 0.017 1.11 4.4 x 10
-8

 0.061 
ARMS2/HTRA1 rs3750846 T/C 0.293 0.436 0.208 1.57 4.1 x 10

-80
 2.81 6.5x10

-735
 5.8x10

-158
 

RDH5/CD63 rs3138141 C/A 0.213 0.222 0.207 1.06 0.070 1.16 4.3 x 10
-9

 7.0 x 10
-3

 
ACAD10 rs61941274 G/A 0.019 0.024 0.018 1.12 0.20 1.51 1.1 x 10

-9
 7.4 x 10

-4
 

B3GALTL rs9564692 C/T 0.285 0.277 0.299 0.93 7.1 x 10
-4

 0.89 3.3 x 10
-10

 0.15 
RAD51B rs61985136 T/C 0.372 0.360 0.384 0.94 6.5 x 10

-3
 0.90 1.6 x 10

-10
 0.026 

LIPC rs2043085 T/C 0.366 0.350 0.381 0.93 4. x 10
-4

 0.87 4.3 x 10
-15

 0.018 
CETP rs5817082 C/CA 0.235 0.232 0.264 0.86 1.7 x 10

-10
 0.84 3.6 x 10

-19
 0.48

 

CTRB2/CTRB1 rs72802342 C/A 0.079 0.067 0.080 0.98 0.63 0.79 5.0 x 10
-12

 2.3 x 10
-6

 
TMEM97/VTN rs11080055 C/A 0.490 0.463 0.486 1.02 0.42 0.91 1.0 x 10

-8
 2.1 x 10

-7
 

NPLOC4/TSPAN10 rs6565597 C/T 0.391 0.400 0.381 1.05 0.038 1.13 1.5 x 10
-11

 1.6 x 10
-3

 
C3 rs2230199 C/G 0.244 0.266 0.208 1.26 6.3 x 10

-19
 1.43 3.8 x 10

-69
 5.5 x 10

-7
 

CNN2 rs67538026 C/T 0.487 0.460 0.498 0.93 1.7 x 10
-3

 0.90 2.6 x 10
-8

 0.23 
APOE rs429358 T/C 0.113 0.099 0.135 0.82 1.7 x 10

-10
 0.70 2.4 x 10

-42
 2.4 x 10

-5
 

MMP9 rs142450006 TTTTC
/T 

0.141 0.124 0.141 1.00 0.88 0.85 2.4 x 10
-10

 5.7 x 10
-7

 

C20orf85 rs201459901 T/TA 0.064 0.054 0.070 0.89 6.6 x 10
-3

 0.76 3.1 x 10
-16

 1.3 x 10
-4

 
SYN3/TIMP3 rs5754227 T/C 0.128 0.109 0.137 0.92 5.4 x 10

-3
 0.77 1.1 x 10

-24
 1.7 x 10

-7 

SLC16A8 rs8135665 C/T 0.212 0.217 0.195 1.11 5.0 x 10
-5

 1.14 5.5 x 10
-11

 0.27 

Co. = control subjects; OR = Odds Ratio; Int. AMD = intermediate AMD; Adv. AMD = advanced AMD 
a Major and minor allele among controls b Association of intermediate AMD versus controls, c Association of 
advanced AMD versus controls, d Testing intermediate AMD versus advanced AMD.  
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Supplementary Table 14: Statistical power to detect intermediate AMD association. We computed the 

power to detect association in the analysis of 6,657 subjects with intermediate AMD compared to 17,832 

controls of European ancestry for selected effect sizes (Odds Ratios) and frequencies that spanned the 

effect sizes and frequencies of the 34 lead variants. Also, different significance thresholds were assumed:  

α = 0.05 (nominal significance), 0.05/34 = 0.0015 (corrected for testing 34 variants), or genome-wide 

significance (5 x 10-8). Since all common variant signals had a MAF between 10% and 50% with advanced 

AMD odds ratios > 1.1, and the rare variant signals (~1%, C9, PRLR/SPEF2, ADAC10, C20orf85) had ORs 

of 1.3 and higher, the power was ~80% to detect the signal also for intermediate AMD – if present - for all 

34 lead variants at the nominal (5%) significance level. 

   Significance level α 

MAF* Odds 
Ratio 

 0.05 0.0015 510-8 

1% 1.10  16% 1% 0% 

1% 1.30  78% 33% 0% 

1% 1.50  99% 89% 14% 

5% 1.10  55% 14% 0% 

5% 1.30  100% 100% 70% 

5% 1.50  100% 100% 100% 

10% 1.10  82% 38% 0% 

10% 1.30  100% 100% 100% 

10% 1.50  100% 100% 100% 

30% 1.10  99% 88% 13% 

30% 1.30  100% 100% 100% 

30% 1.50  100% 100% 100% 

50% 1.10  100% 93% 22% 

50% 1.30  100% 100% 100% 

50% 1.50  100% 100% 100% 

*MAF = minor allele frequency in controls 
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Supplementary Table 15: Enriched pathways for genes in the 10 AMD loci not associated with intermediate AMD versus the 24 loci associated with 

intermediate AMD. As before (see Supplementary Table 10), we queried pathway data bases (Reactome, GO, KEGG) using INRICH, obtaining P-values 

based on 50,000 Bootstrap rounds and 1,000,000 replication runs and 8,957,338 common variants (MAF ≥ 1% in cases and controls combined) and matching 

selected target regions in terms of gene count, variant density and total number of variants76. Only gene sets with ≥ 3 genes were analyzed. Shown are the 

enriched pathways (corrected P<0.10) and the genes contributing to the enrichment A for the 10 narrow AMD locus regions identified by the 11 of the 52 

variants (variants and proxies, r2≥0.5, ±100kb) that were not nominally associated with intermediate AMD (Pintermediate > 0.05), and B the 24 narrow AMD locus 

regions identified by the 41 of the 52 that were nominally associated with intermediate AMD.  

 

A for the 10 loci not associated with intermediate AMD 

Database Pathway 
#genes 
in gene 

set 

#AMD loci 
in gene 

set 

Empirical 
P 

Corrected 
P

 Genes contributing to enrichment 

Reactome Collagen Pathways      

 Assembly of Collagen Fibrils and Other 
Multimeric Structures 

54 3 2.6 x 10
-5 

0.0034 COL15A1, COL8A1, MMP9 

 Collagen Degradation 37 3 3.2 x 10
-5 

0.0041 COL15A1, MMP19, MMP9 

 Collagen Formation 84 3 2.2 x 10
-4 

0.022 COL15A1, COL8A1, MMP9 

 Extracellular Matrix Pathways      

 Degradation of the Extracellular Matrix 88 5 1.0 x 10
-6

 4.0 x 10
4 

ADAMTS9, COL15A1, CTRB1/CTRB2, MMP19, 
MMP9 

GO Collagen Pathway      

 Collagen Catabolic Process (GO:0030574) 73 4 1.0 x 10
-6 

0.0014 COL15A1, COL8A1, MMP19, MMP9 

 Extracellular Matrix Pathways      

 Extracellular Matrix Disassembly (GO:0022617) 116 5 4.0 x 10
-6 

0.0037 COL15A1, COL8A1, CTRB1/CTRB2, MMP19, 
MMP9 

 Extracellular Matrix (GO:0031012) 185 5 2.8 x 10
-5 

0.017 ADAMTS9, COL15A1, COL8A1, MMP19, VTN 

 Others      

 Endodermal Cell Differentiation (GO:0035987) 27 4 1.0 x 10
-6 

0.0014 COL8A1, ITGA7, MMP9, VTN 

KEGG Extracellular Matrix pathways      

 Focal Adhesion 197 4 0.00336 0.080 BCAR1, ITGA7, MYL2, VTN 
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B for the 24 AMD loci associated with intermediate AMD 

Database Pathway 
#genes in 
gene set 

#AMD loci 
in gene set 

Empirical 
P 

Corrected 
P

 Genes contributing to enrichment 

Reactome Complement Pathways      

 Regulation of Complement Cascade 22 5 2.0 x 10
-6 

5.6 x 10
-4 

C2 /C4A/C4B/CFB, C3, C9, CFH/CFHR3, 
CFI 

 Complement Cascade 36 5 1.4 x 10
-5 

0.0028 C2 /C4A/C4B/CFB, C3, C9, CFH/CFHR3, 
CFI 

 Lipid Pathways      

 Lipoprotein Metabolism 30 4 1.6 x 10
-4 

0.025 ABCA1, APOC2/APOE, CETP, LIPC 

 Lipid Digestion, Mobilization, and Transport 50 4 4.9 x 10
-4 

0.068 ABCA1, APOC2/APOE, CETP, LIPC 

GO Complement Pathways      

 Regulation of Complement Activation 
(GO:0030449) 

24 5 6.0 x 10
-6 

0.0083 C2 /C4A/C4B/CFB, C3, C9, CFH, CFI 

 Complement Activation, Alternative Pathway 
(GO:0006957) 

13 4 6.2 x 10
-5 

0.059 C3, C9, CFB, CFH/CFHR5 

 Lipid Pathways      

 High-Density Lipoprotein Particle (GO:0034364) 22 5 1.3 x 10
-5 

0.016 ABCA1, APOE/APOC1/APOC4, APOM, 
CETP, LIPC 

 Reverse Cholesterol Transport (GO:0043691) 18 5 1.4 x 10
-5 

0.017 ABCA1, APOE/APOC2, APOM, CETP, 
LIPC 

 Phospholipid Transporter Activity (GO:0005548) 7 3 5.5 x 10
-5 

0.054 ABCA1, ABCA7, CETP 

 High-Density Lipoprotein Particle Assembly 
(GO:0034380) 

8 4 9.3 x 10
-5 

0.084 ABCA1, ABCA7, APOE, APOM 

 Others      

 Receptor-Mediated Endocytosis (GO:0006898) 126 8 1.0 x 10
-6 

0.0025 APOE, CETP, CFI, DAB2, DMBT1, 
HSPH1, LOXL2, MICALL1 

KEGG Complement Pathways      

 Complement and Coagulation Cascades 68 5 7.6 x 10
-4 

0.039 C2/C4A/C4B, C3, C9, CFB, CFH/F13B, 
CFI 
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Supplementary Table 16: Relative and absolute risk for advanced AMD by genetic risk score deciles based on the 52 signals. We 

derived the weighted genetic risk score (GRS) based on the 52 independent index variants (using the fully conditioned log Odds Ratio per 

variant as weight) and obtained a realistic GRS distribution by modeling a general population with different prevalence assumptions using 

different weights for advanced AMD cases and controls. Shown here are the GRS intervals assuming 5% prevalence (weight for cases = 0.105, 

for controls = 1.81; see Material and Methods). We computed approximate relative risk (Odds Ratio) for advanced AMD per GRS decile with 

the lowest decile as reference and absolute risk of advanced AMD (= % affected, again utilizing the weighted counts).  

GRS 
decile 

GRS 
interval 

Observed 

 

Weighted 

# 
cases 

# Controls % affected Odds ratio # cases # controls % affected 

1 [-3.829;-1.439] 214 1,865 10.3% reference  22.5 3,375.8 0.7% 

2 (-1.439;-0.957] 270 1,861 12.7% 1.3  28.4 3,368.5 0.8% 

3 (-0.957;-0.590] 364 1,856 16.4% 1.7  38.3 3,359.5 1.1% 

4 (-0.589;-0.270] 529 1,847 22.3% 2.5  55.7 3,343.2 1.6% 

5 (-0.270;0.032] 664 1,838 26.5% 3.2  69.9 3,326.9 2.1% 

6 (0.032;0.331] 891 1,825 32.8% 4.2  93.8 3,303.4 2.8% 

7 (0.332;0.672] 1,266 1,804 41.2% 6.1  133.2 3,265.4 3.9% 

8 (0.672;1.077] 1,813 1,771 50.6% 8.9  190.8 3,205.6 5.6% 

9 (1.077;1.635] 2,796 1,715 62.0% 14.0  294.2 3,104.3 8.7% 

10 (1.635;7.186] 7,337 1,450 83.5% 44.0  772.1 2,624.6 22.7% 

GRS = genetic risk score; Adv. AMD = advanced AMD 
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Supplementary Table 17: Heterogeneity of risk variants previously published. 

We repeated the analysis of our joint data set by meta-analysing study-specific 

statistics, computed the I² measure of heterogeneity48, and compared these results for 

the 19 index variants from the previous study11. Stated are the variants and their I² 

measures in the previous and the current study, which indicates that heterogeneity of 

the current study tended to lower than that of the previous study (median across the 

19 variants being 12% versus 23%, respectively). 

Locus name Chr(c) Previous Study  r²(f) Current Study  

  dbSNP ID(d) I² 
(%)(e) 

 dbSNP ID(g) I² (%)(h) 

CFH 1 rs10737680 84% - rs10737680 59% 

ADAMTS9-AS2 3 rs6795735 23% - rs6795735 47% 

COL8A1/FILIP1L 3 rs13081855 0% - rs13081855 29% 

CFI 4 rs4698775 46% - rs4698775 0% 

C2-CFB 6 rs429608 56% - rs429608 46% 

VEGFA 6 rs943080 34% - rs943080 12% 

COL10A1 (b) 6 rs3812111 34% - rs3812111 0% 

IER3/DDR1 (c) 6 rs3130783 0% - rs3130783 27% 

TNFRSF10A 8 rs13278062 0% - rs13278062 0% 

TGFBR1 9 rs334353 0% - rs334353 0% 

ARMS2/HTRA1 10 rs10490924 77% - rs10490924 64% 

B3GALTL 13 rs9542236 57% - rs9542236 23% 

RAD51B 14 rs8017304 6% - rs8017304 22% 

LIPC 15 rs920915 0% - rs920915 0% 

CETP 16 rs1864163 0% - rs1864163 0% 

C3 19 rs2230199 25% - rs2230199 0% 

APOE 19 rs4420638 9% - rs4420638 22% 

TIMP3 22 rs5749482 0% 0.82 rs5754227(a) 0% 

SLC16A8 22 rs8135665 39% - rs8135665 30% 

Chr = Chromosome; (a) proxy variant used; (b) COL10A1 locus was not genome-
wide significant in current study (rs3812111: P=1.2 x10-4), (c) IER3/DDR1 was 
merged with C2/CFB in current study because the signal disappeared after adjusting 
for the C2/CFB index variant, (d) dbSNP identifier of previous study lead variant, (e) I² 
in European subjects of discovery cohort of the previous study, (f) correlation 
coefficient, r², between previous lead variant and proxy variant in the current study, if 
applicable, (g) dbSNP identifier of (proxy) variant in current study, (h) I² of (proxy) 
variant in current study. 
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Supplementary Table 18: Heterogeneity of the 34 identified lead variants. I² as measure 

of heterogeneity and the P-value testing for significant heterogeneity based on the Q 

statistics were computed. Results of a random effects model are provided, which show very 

similar Odds Ratio estimates as the our original analysis and a tendency towards larger P-

values as expected given the known lower power of a random effects model.  

    
 European 

major/ 
minor 
allele 

Heterogeneity 
  

Random effects 
model 

Original 
analysis 

Locus name Lead variant I
2
 P 

 
P 

Odds 
Ratio 

Odds 
Ratio 

KNOWN (previously reported with genome-wide significance, P < 5x10
-8

)     

CFH rs10922109 C/A 59% 1.20x10
-4

 
 

2.21x10
-175

 0.40 0.38 

ADAMTS9/AS2 rs62247658 T/C 47% 5.27x10
-3

 
 

1.05x10
-06

 1.13 1.14 

COL8A1 rs140647181 T/C 0% 0.74 
 

4.90x10
-08

 1.49 1.59 

CFI rs10033900 C/T 0% 0.55 
 

3.02x10
-13

 1.13 1.15 

C9 rs62358361 G/T 0% 0.47 
 

2.18x10
-09

 1.64 1.80 

C2/CFB/SKIV2L rs116503776 G/A 46% 6.53x10
-3

 
 

2.41x10
-47

 0.57 0.57 

VEGFA rs943080 T/C 0% 0.63 
 

2.29x10
-13

 0.88 0.88 

TNFRSF10A rs79037040 T/G 0% 0.85 
 

1.56x10
-10

 0.90 0.90 

TGFBR1 rs1626340 G/A 0% 0.72 
 

7.95x10
-11

 0.87 0.88 

ARMS2/HTRA1 rs3750846 T/C 64% 8.30x10
-6

 
 

2.17x10
-189

 2.75 2.81 

B3GALTL rs9564692 C/T 23% 0.15 
 

5.77x10
-07

 0.89 0.89 

RAD51B rs61985136 T/C 22% 0.16 
 

8.43 x10
-06

 0.91 0.90 

LIPC rs2043085 T/C 0% 0.74  7.54x10
-12

 0.88 0.87 

CETP rs5817082 C/CA 0% 0.66 
 

4.00x10
-18

 0.84 0.84 

C3 rs2230199 C/G 0% 0.90 
 

3.18x10
-50

 1.37 1.43 

APOE rs429358 T/C 22% 0.15 
 

3.91x10
-24

 0.72 0.70 

SYN3/TIMP3 rs5754227 T/C 0% 0.69 
 

1.17x10
-22

 0.77 0.77 

SLC16A8 rs8135665 C/T 30% 0.08 
 

1.27x10
-06

 1.14 1.14 

NOVEL (reported with genome-wide significance, P < 5x10
-8

, for the first time)   

COL4A3 rs11884770 C/T 13% 0.27 
 

2.89x10
-06

 0.90 0.90 

PRLR/SPEF2 rs114092250 G/A 0% 0.81 
 

4.13 x10
-05

 0.75 0.70 

PILRB/PILRA rs7803454 C/T 11% 0.31 
 

3.27 x10
-08

 1.14 1.13 

KMT2E/SRPK2 rs1142 C/T 19% 0.19 
 

7.40 x10
-06

 1.10 1.11 

TRPM3 rs71507014 GC/G 2% 0.44 
 

2.55 x10
-06

 1.09 1.10 

MIR6130/RORB rs10781182 G/T 0% 0.94 
 

1.26 x10
-06

 1.09 1.11 

ABCA1 rs2740488 A/C 51% 1.74x10
-3

 
 

3.16 x10
-06

 0.87 0.90 

ARHGAP21 rs12357257 G/A 11% 0.31 
 

6.05 x10
-06

 1.11 1.11 

RDH5/CD63 rs3138141 C/A 0% 0.54 
 

5.24 x10
-08

 1.16 1.16 

ACAD10 rs61941274 G/A 28% 0.10  3.61x10
-05

 1.46 1.51 

CTRB2/CTRB1 rs72802342 C/A 0% 0.52 
 

8.12 x10
-08

 0.83 0.79 

TMEM97/VTN rs11080055 C/A 0% 0.93 
 

3.19 x10
-08

 0.91 0.91 

NPLOC4/TSPAN10 rs6565597 C/T 9% 0.34 
 

2.84 x10
-08

 1.12 1.13 

CNN2 rs67538026 C/T 0% 0.86 
 

3.66 x10
-06

 0.91 0.90 

MMP9 rs142450006 TTTTC/T 0% 0.73 
 

1.29 x10
-10

 0.84 0.85 

C20orf85 rs201459901 T/TA 0% 0.71   2.88 x10
-14

 0.76 0.76 
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Supplementary Table 19: Sensitivity analyses results for the rare variants 

burden test with locus-wide conditioning. We repeated the rare variant burden 

analysis (a) excluding the overlap of our association analysis data set with the 

previously sequenced subjects (excluding 858 advanced AMD cases and 650 control 

persons, thus comparing 15,286 advanced AMD subjects and 17,182 controls) and 

(b) prioritizing variants with high functionality by restricting to variants with a CADD 

score ≥ 20 using the original 16,144 advanced AMD patients and 17,832 control 

subjects of European ancestry. 

 

Gene # variants in analysis  
 Locus-wide conditioned 

 
Optimal 

RAC 
# Variants with  

  MAC ≤ optimal RAC 
Effect  

  directiona 
P 

Sensitivity analysis excluding previously sequenced subjects 

CFI 47  44 43 + 1.0 x 10-8 

TIMP3 10  14 9 + 4.0 x 10-8 

CFH 49  8 35 + 2.8 x 10-7 

SLC16A8 9  615 9 + 3.5 x 10-6 

Sensitivity analysis restricting to variants with CADD ≥ 20 

CFI 12  46 12 + 2.0 x 10-8 

TIMP3 3  14 3 + 3.5 x 10-6 

SERPINA1 b 6  1,055 5 - 3.4 x 10-7 

CFH 1 c  NA NA NA NA 

SLC16A8 7   648 7 + 1.5 x 10-6 

RAC: risk allele count; MAC: minor allele count; MAF = minor allele frequency; NA = not 
available 
a “+” and “-“ indicates AMD risk increase or decrease by the accumulated rare variants 
b Outside of 34 risk loci, and thus no locus wide conditioning 
c Burden test results not available for CFH, only genes with > 1 variant with CADD ≥ 20 were 
analyzed.   
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Supplementary Table 20: Overview of information in gene priority score table. The 

number of genes per locus and the number of genes per locus with the respective 

characteristics (e.g. the number of genes with identified expression etc.) are provided.  
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CFH 1 12 1 7 6 2 12 1 4 2 2 1 3 0 
COL4A3 2 3 1 4 3 1 2 0 0 0 0 0 2 0 
ADAMTS9-AS2 3 3 2 2 2 0 3 0 0 0 0 1 0 0 
COL8A1 3 7 0 3 3 0 5 0 0 0 0 0 1 0 
CFI 4 7 0 5 6 1 3 1 1 0 0 0 1 0 
C9 5 3 1 3 2 0 2 0 1 0 0 0 1 0 
PRLR/SPEF2 5 6 0 3 4 0 1 0 0 0 0 1 0 1 
C2/CFB/SKIV2L 6 110 0 7 68 7 54 0 2 3 4 3 5 7 
VEGFA 6 1 4 4 1 1 0 0 0 0 0 0 1 1 
KMT2E/SRPK2 7 7 1 3 3 0 5 0 0 1 2 0 0 0 
PILRB/PILRA 7 23 0 5 18 0 15 0 1 5 5 7 1 0 
TNFRSF10A 8 5 1 3 5 0 2 0 0 0 0 1 1 0 
MIR6130/RORB 9 0 0 0 0 0 0 0 0 0 0 0 0 0 
TRPM3 9 2 2 4 1 1 2 0 0 1 0 1 0 0 
TGFBR1 9 4 1 3 4 0 3 0 0 1 0 0 1 0 
ABCA1 9 1 4 4 1 0 1 0 0 0 0 0 1 1 
ARHGAP21 10 3 1 3 3 0 2 0 0 1 0 0 0 0 
ARMS2/HTRA1 10 5 0 3 2 1 4 0 1 0 0 0 0 0 
RDH5/CD63 12 13 0 4 11 2 11 0 0 0 0 0 3 2 
ACAD10 12 19 0 4 12 1 12 0 0 1 0 0 1 2 
B3GALTL 13 2 1 2 2 0 1 0 0 0 0 0 0 0 
RAD51B 14 1 2 2 1 0 1 0 0 0 0 0 0 0 
LIPC 15 1 3 3 0 0 1 0 0 0 0 1 1 0 
CETP 16 5 0 2 2 0 4 0 0 0 0 0 1 1 
CTRB2/CTRB1 16 12 1 4 10 1 4 0 0 0 0 0 3 1 
TMEM97/VTN 17 15 1 5 11 1 13 0 1 1 1 0 1 2 
NPLOC4/TSPAN10 17 16 0 5 12 3 10 0 1 1 0 1 1 4 
C3 19 18 1 6 16 2 12 0 3 0 1 0 2 2 
CNN2 19 10 2 4 8 1 10 0 0 2 1 0 0 2 
APOE 19 24 0 5 20 3 14 0 1 1 0 1 3 0 
MMP9 20 10 1 5 10 2 5 0 1 0 0 1 2 1 
C20orf85 20 1 0 0 0 0 0 0 0 0 0 0 0 0 
SYN3/TIMP3 22 2 2 5 2 1 1 1 0 0 0 0 1 1 
SLC16A8 22 17 0 5 13 1 4 1 0 0 0 0 1 3 

Total  368 33 127 262 32 219 4 17 20 16 19 38 31 
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Supplementary Note 1: Comparison to previously published loci 

Among the 21 previously reported loci, there are three that are not supported in our analysis. 

First, rs3130783 near IER3/DDR1 lost evidence of association in our analysis after 

conditioning on variants near the CFB/C2 genes (approximately 2 Mb distant; P = 2.31 x 10-7 

before and P = 0.0134 after conditioning on rs116503776). This indicates that this locus was 

an artifact from linkage disequilibrium in the previous study that we were able to solve in our 

investigation by creating wider locus regions and by identifying independent variants through 

a sequential conditioning approach. Second, rs3812111 near COL10A1 exhibited only 

relatively modest evidence for association in our data (P = 1.2 x 10-4), without genome-wide 

significance. Third, rs1713985 around REST/C4orf14/POLR2B/IGFBP7 on chromosome 

4q12, which was previously associated with advanced AMD in Japanese individuals49, was 

not associated in our data with advanced AMD (OR=1.05, p=0.081) in our European 

subjects.  

Effect size estimates at our known loci variants were comparable with previous 

reports, except for CFI G119R (rs141853578) with our odds ratio of 3.64 being substantially 

smaller than the previously published odds ratio of 20.2, possibly pointing to a inflated effect 

size in the identifying study (winner’s curse). When we applied the same meta-analysis 

approach as in our previous analysis that identified 19 lead variants11,31, we found that 

between-study heterogeneity was smaller in our current data (median heterogeneity across 

the 19 variants = 12%) than in our previous data (median 23%) including a decrease from 

84% to 60% for the top CFH variant (Supplementary Table 17).  

For our 34 lead variants, we observed significant heterogeneity (P of Q statistics ≤ 

0.05) for the loci CHF, ARMS/HTRA, C2/CFB/SKIV2L, and ADAMTS9 (I² from 47% to 64%) 

as observed previously; for the novel loci, we find low heterogeneity, except for one locus 

(ABCA1, I² =51%, Supplementary Table 18). When applying a model accounting for 

between-study heterogeneity (random effects model50), we find very similar Odds Ratio 

estimates and a tendency towards large P-values, as expected due to the known lower 

power of the random effects model (Supplementary Table 18).  

 

Supplementary Note 2: We evaluated interaction of each of the 52 variants with the four 

main lead variants (at the loci ARMS2, CFH, C2/CFB and C3) by logistic regression models 

including the respective variants and the two-way interaction term additionally to the other 

covariates (two principal components and DNA source). This corresponded to 198 

(=51+50+49+48) pairwise interaction tests, since the 4 main lead variants were also among 

the 52 variants. Accounting for these 198 models tested (P< 0.05/198 = 2.52 x 10x-4) , two 

signals passed the Bonferroni significance threshold: an interaction between CFH: 

rs10922109 and CFH: rs61818925 (P for interaction = 1.8 x 10-29), which could be the result 
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of LD or a haplotype effect, and an interaction between CFH: rs570618 with C2/CFB/SKIV2L: 

rs116503776 (P for interaction = 6.4 x 10-6). 

 

Supplementary Note 3: Sensitivity analyses for burden test 

There was an overlap of our subjects that we had sequenced to detect rare variants with the 

subjects in our association analysis (see Methods). When we conducted a sensitivity 

analysis excluding the 650 controls and 858 advanced AMD cases in the overlap, we found 

virtually the same results without (data not shown) and with conditioning on the other 

identified variants (CFH, CFI, TIMP3 and SLC16A8, Supplementary Table 19). 

We were also interested whether focusing on functionality would improve the burden 

signal. We thus restricted the rare protein-altering variants in the variable threshold test to 

variants with CADD Score36 ≥ 20; we found similar results for three of the four genes with 

significant burden conditioned on the other variants in the locus as in the original analysis 

(CFI, SLC16A8, and TIMP3). CFH was not included in these analyses, as there was no 

variant with CADD score ≥ 20. Additionally, we found a new gene with genome-wide 

significant burden in SERPINA1 (Supplementary Table 19); this burden is in fact driven by a 

single missense variant, rs28928474.  

 

Supplementary Note 4: Motivated by recent work on the short CFH isoform (factor H-like 

protein 1)51, we dissected the variants in the CFH between those unique to the long isoform 

coding regions (21 variants) and the others (15 in the overlap, one unique to the short 

isoform) and found a predominant burden from the latter (OR = 13.5, P = 9.9x10-7, 50 rare 

alleles in cases, 4 in controls versus OR 1.6, P= 0.08, 38 rare alleles in cases, 34 in 

controls). It should be noted that this analysis eliminated the strong effect of R1210C 

(rs121913059), a variant unique to the long isoform, by conditioning the burden analyses on 

the eight CFH variants among the 52 identified variants.  

 

Supplementary Note 5: The gene priority table is a summary of the evidence from 

expression, association, bio-informatics, pathway enrichment, and drugability. The score can 

be customized by each researcher depending on his/her own priorities or research questions 

by putting a specific weight to each column. A summary of the total number of genes per 

locus and the number of genes with the respective characteristics per locus is given in 

Supplementary Table 20.  

 

Supplementary Note 6: One additional subtype-specific locus by CNV-specific 

genome-wide single variant association analysis 
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This signal specific to choroidal neovascular disease (CNV) near MMP9 was markedly 

stronger in an analysis restricted to CNV cases compared to the primary genome-wide 

association analysis (PCNV = 8.4 x 10-17 vs. PGWAS = 2.4 x 10-10) in-line with larger power of 

stratified analyses for signals only present in one stratum52. Encouraged by the possibility of 

additional subtype-specific loci, we repeated our genome-wide analysis stratified by disease 

subtype and identified one additional locus, near LINC00461 (aka Eyelinc1)53, specific to 

neovascular disease (rs17421410, CAF = 6.92%, OR = 1.23, PGWAS/CNV = 5.0 x 10-9) without 

association for GA (ORGA = 1.03; PGWAS/GA = 0.59; Pdiff = 1.2 x 10-3)54,55. This is a biologically 

interesting locus for CNV-specific genetic association due to previous association with retinal 

vessel caliber.  
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Supplementary File Legends: 

 

Supplementary File 1: Locuszoom Plots for each of the 52 identified signals. Region 

plots showing single variant association P-values of variants around each of the 52 index 

variants. Shown are also the location/direction of underlying genes and the location of the 

variants in the 95% credible sets.  

 

Supplementary File 2: Extended results of the 34 lead variants in Non-European 

subjects. We analysed the association of advanced AMD compared to control subjects in an 

Asian (473 cases, 1,099 controls), African (52 cases, 361 controls), and “other ancestry” 

group (254 cases, 694 controls) for our 34 lead variants. Shown are frequencies, Odds 

ratios, and P-values from the Firth-corrected logistic regression for all analyses.  

 

Supplementary File 3: Variants in 95% credible sets and their annotation. For each of 

the 52 index variants, the 95% credible sets contain the minimal set of variants that add up to 

> 95% posterior probability.  

 

Supplementary File 4: Details about the identified rare protein-altering variants in CFH, 

CFI, TIMP3 and SLC18A8 that we found to be enriched in AMD cases (see also Table 

2). Here we show the variants of each gene below the optimal risk allele frequency that 

contributed to the observed significant burden. 

 

Supplementary File 5: Genes in the 34 identified AMD locus regions. Stated are all 

genes that overlap with the 34 AMD locus regions (defined by the 52 identified variants, their 

proxies, r² ≥ 0.5, ±500kb) as well as an indicator whether this gene was also among the 368 

genes in the narrow AMD locus regions (defined by 52 identified variants, proxies, r² ≥ 0.5, 

±100kb).  

 

Supplementary File 6: Gene expression in retina and RPE/choroid for genes in 34 

narrow AMD regions. Gene expression in human retina tissue as well as retina pigment 

epithelium (RPE) or human choroid tissue for the 368 genes in 34 narrow AMD locus regions 

have been provided by two laboratories, the Weber lab and the Stambolian lab (see Material 

and Methods). A consensus rating was obtained by defining the gene as “expressed”, if it 

was expressed in both data sets. It was defined as “not expressed”, if it was found as not 

expressed in at least one laboratory, and as “missing” otherwise.  
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Supplementary File 7: Relevant eye phenotypes in genetic mouse models in 33 genes 

in the 34 narrow AMD regions. We queried data bases and conducted a literature search 

(see Material and Methods) for the 368 genes in the 34 narrow AMD regions and found 

relevant eye phenotypes for 33 of these genes.  

 

Supplementary File 8: Approved and experimental drug targets among 368 genes in 

narrow AMD region. We queried the DrugBank data base (Version 4.1, Web Resources) to 

obtain overlap of the 368 genes in our 34 identified AMD regions with drug target list. We 

found 31 of these genes to be a current drug target.  

 

Supplementary File 9: Summary of biological and statistical evidence for genes in 

narrow AMD regions. For all genes in the narrow AMD loci (Supplementary File 5), we 

gathered evidence whether the gene (i) was expressed in retina or RPE/choroid 

(Supplementary File 6), (ii) had a retina or RPE/choroid phenotype in genetic mouse 

models (Supplementary File 7), (iii) contained ≥1 variant in a 95% credible set by extending 

to ± 50 kb around the gene (Supplementary File 3), or (iv) had a significant rare variant 

burden (Table 2, Supplementary File 4). Furthermore, we derived whether the credible set 

variants in the gene (± 50 kb) contained (v) a protein altering, (vi) a 5’/3’UTR, (vii) another 

exonic coding, or (viii) a putative promoter variant (Supplementary File 3), or, whether the 

gene (ix) was in an enriched molecular pathway (Supplementary Table 10), or (x) linked to 

an approved or experimental drug (Supplementary File 8).  
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