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[1] Models of groundwater flow and solute transport may be affected by numerical error,
leading to quantitative and qualitative changes in behavior. In this paper we compare and
combine three methods of assessing the extent of numerical error: grid refinement,
mathematical analysis, and benchmark test problems. In particular, we assess the popular
solute transport code SUTRA [Voss, 1984] as being a typical finite element code. Our
numerical analysis suggests that SUTRA incorporates a numerical dispersion error and
that its mass-lumped numerical scheme increases the numerical error. This is confirmed
using a Gaussian test problem. A modified SUTRA code, in which the numerical
dispersion is calculated and subtracted, produces better results. The much more
challenging Elder problem [Elder, 1967; Voss and Souza, 1987] is then considered.
Calculation of its numerical dispersion coefficients and numerical stability show that the
Elder problem is prone to error. We confirm that Elder problem results are extremely
sensitive to the simulation method used. INDEX TERMS: 1832 Hydrology: Groundwater transport;

1894 Hydrology: Instruments and techniques; KEYWORDS: variable density, Elder problem, benchmarking,

salinity, contaminant transport
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1. Introduction

[2] Groundwater modeling is now an important part of
many hydrogeological investigations. Models are used to
explore physical processes, to summarize what is known
about field sites, and to investigate different management
practices. In all of these applications, an understanding of
model accuracy is essential.
[3] One factor affecting accuracy is numerical error,

which occurs in all computational simulations. Numerical
error can lead to quantitative and even qualitative changes
in simulation results, potentially affecting the management
of field sites [Simmons et al., 1999; Woods et al., 1998,
1999].
[4] There are many types of numerical error. If the chosen

grid spacing and time step length are too large, small errors
may grow to dominate part of a simulation, resulting in
numerical instability [Noye, 1978; Ferziger and Perić,
1999]. This often leads to physically unreasonable results
and problems with convergence. Another kind of numerical
error is numerical dispersion [Noye and Hayman, 1985;
Gresho and Sani, 1998]. Numerical dispersion is insidious
because it mimics hydrodynamic dispersion (a heuristic

description of various physical processes [Bear, 1972])
producing smooth results that may seem plausible. Round-
off error occurs because a computer stores each number as a
finite sequence of digits, but unless very fine grids or very
small time steps are chosen, it is usually negligible for stable
solution schemes [May and Noye, 1984]. Other numerical
errors may be introduced through the use of iterative
solvers, approximations of boundary conditions and the
solution of nonlinear PDEs, such as those arising from
variable-density flows.
[5] The amount of numerical error present in a given

simulation depends on both the code developer and code
user. The code developer chooses the numerical approxi-
mation of the PDE(s) while the code user chooses the grid-
spacing and time step regime. The assessment of numerical
error is important to both.
[6] This assessment is usually an implicit part of model

verification, which is typically investigated through one of
three main methods: (1) grid refinement, (2) mathematical
analysis, and (3) test problems. Grid refinement studies are
reasonably common [Kolditz et al., 1997; Holzbecher,
1998; Diersch, 1996; Frolkovič and Schepper, 2000; Schin-
cariol et al., 1994] but tell us little about the general validity
of a code. The second approach, that of mathematical
analysis, is used fairly rarely for groundwater problems.
Two recent papers on the analysis of numerical error are
those of Benson et al. [1998] and Lal [2000]: Benson et al.
[1998] consider the truncation error inherent in some types
of velocity calculation, while Lal [2000] uses Fourier
analysis to evaluate errors in MODFLOW. However, within
the groundwater literature the most common method of
verification is the test problem. Unfortunately, few satisfy
what we believe to be the three criteria of a good test
problem: that it is well-defined, well-understood and diffi-
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cult to simulate. By ‘well-defined,’ we mean that the initial
conditions, boundary conditions and hydraulic parameters
are specified exactly and unambiguously; by ‘‘well-under-
stood,’’ we mean that the resulting flow is known precisely;
and by ‘‘difficult to simulate’’ we mean that numerical
errors inherent in a code lead to large quantitative or
qualitative differences between the expected and simulated
results unless extremely accurate solution techniques are
used.
[7] In this paper, we demonstrate that numerical error can

best be assessed through a combination of approaches, as
each approach sheds light on the others. We introduce a
numerical analysis technique from finite difference methods
(FDMs) which improves our understanding of grid refine-
ment studies and test simulations. As an illustration, we
consider a well-known code for the simulation of variable-
density groundwater flow and solute transport: SUTRA
[Voss, 1984]. SUTRA is chosen because it is a popular,
well-documented, open source code that can be considered
typical of many groundwater codes. However, results pre-
sented here have much broader application as most codes
will probably suffer from the same problems. We show that
even small (third order) changes to its solution technique
can lead to large changes in simulation results.

2. Numerical Analysis

[8] In this section, we demonstrate how numerical anal-
ysis can provide insights into the accuracy of a simulation
code. To make this analysis tractable, we need to make
some simplifying assumptions. It is assumed that (1) trans-
port is of an inert solute such as salt, (2) the domain being
simulated is two-dimensional, (3) the porous medium is
saturated, homogeneous and isotropic, (4) fluid viscosity is
constant, (5) there is no hydrodynamic dispersion, only
diffusion, and (6) the direction of gravity coincides with
the y axis. These assumptions are fairly strict and few real-
world simulations conform to them. However, our analysis
should at least provide a guide to a code’s behavior for more
complicated simulations.
[9] Given these assumptions, the following equations for

fluid flow and solute transport need to be solved:

rS
@p

@t
þ erref g

@c

@t
¼ �r � rqð Þ; ð1Þ

r
@c

@t
¼ � 1

e
rq � rcþ Dr � rrcð Þ; ð2Þ

where c is dimensionless concentration (mass of solute as a
proportion of the total mass of brine), D is the molecular
diffusivity (m2s�1), p is pressure (kgm�1s�2), S is storativity
(Pa�1), g is the dimensionless coefficient of density change
with concentration, e is porosity, and rref is some reference
density (kgm�3). Darcy velocity q (ms�1) and density r are
given by [Voss, 1984]:

q ¼ � k

m
rp� rgð Þ; ð3Þ

r ¼ rref 1þ gcð Þ; ð4Þ

where g = (0, �jgj) is acceleration due to gravity (ms�2), k
is permeability (m2) and m is the dynamic viscosity
(kgm�1s�1). This formulation is expressed in terms of
pressure and dimensionless concentration. Other formula-
tions exist [Diersch, 1996; Holzbecher, 1998] but are
generally regarded as equivalent.

2.1. SUTRA’s Solution Method

[10] SUTRA solves equations (1) and (2) using a hybrid
finite element method (FEM), the details of which are given
by Voss [1984]. The standard FEM divides a modeled region
into elements and nodes. Dependent variables are approxi-
mated by piecewise-continuous functions, i.e., a continuous
variable f (x, y, t) is replaced by a sum of discretized (nodal)
values multiplied by weighting functions fl. The approxi-
mation is continuous over each element. That is,

f x; y; tð Þ 	
XN
l¼1

fl tð Þfl x; yð Þ; ð5Þ

where the l subscript refers to a particular node and N is the
total number of nodes.
[11] SUTRA modifies this standard FEM in two main

ways. Firstly, it treats the time derivatives in equations (1)
and (2) differently. Instead of discretizing

@f

@t
ðx; y; tÞ 	

XN
l¼1

@fl
@t

tð Þfl x; yð Þ; ð6Þ

the following is used:

@f

@t
x; y; tð Þ 	 @fm

@t
tð Þ; ð7Þ

where m denotes the specific, single node at which @f/@t is
being evaluated. That is, the time derivative is evaluated at a
single point (as if all the mass were at that point) rather than
averaged over all adjoining nodes. This technique is known
as ‘‘mass-lumping.’’ Mass lumping enables marginally
faster calculation of the matrix equation and theoretically
leads to a more stable system, but doubts have been raised
about its validity and accuracy [Becker et al., 1986; Gresho
and Sani, 1998].
[12] SUTRA also treats one of the velocity terms differ-

ently. The standard discretization of the velocity in terms of
pressure and density leads to

q 	 � k

m

XN
l¼1

plrfl � rlflgð Þ: ð8Þ

However, this means that the pressure term changes with
rfl while the density term changes with flg. The two
terms, when put together, do not vary consistently over an
element [Benson et al., 1998]. To overcome this, Voss
introduces the following consistent velocity discretization:

q 	 � k

m

XN
l¼1

plrfl � Jrl rflj jgð Þ; ð9Þ

where J is the element’s Jacobian:

J ¼

@x

@z
@y

@z
@x

@h
@y

@h

��������

��������
; ð10Þ
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given that (z, h) are an element’s ‘‘local coordinates’’ (i.e.,
each FEM element can be mapped from global (x, y) space
to local (z, h) space, where each element becomes a square
such that �1 < z < 1 and �1 < h < 1). The term ‘‘consistent
velocity discretization’’ is perhaps unfortunate, as the
standard discretization method (8) is consistent with usual
finite element notions; what Voss [1984] wishes to convey is
that equation (9) is consistent physically. Benson et al.
[1998] outline other methods of achieving this physical
consistency. Thus SUTRA is a hybrid finite element code
employing mass-lumping and a ‘‘consistent-velocity’’
technique.

2.2. Numerical Dispersion

[13] Our first analytic technique is the calculation of the
modified equivalent partial differential equation (MEPDE).
The MEPDE is, in essence, the PDE which an approximate
equation is actually solving [Warming and Hyett, 1974; Noye
and Hayman, 1985]. However, the MEPDE technique was
developed for finite difference methods and has not, to our
knowledge, been applied before to a finite element code,
such as SUTRA. This problem is circumvented as follows:
the discretized, approximate SUTRA equations are applied
to a uniform rectangular grid and the integral terms evaluated
exactly. This reduces the finite element method to an
equivalent finite difference method for which the MEPDE
can be calculated. This process is developed in the following
manner: each node within the rectangular finite element grid
has eight additional nodes surrounding it that lead to non-
zero links within the global finite element matrix. In finite
difference terms, the node is designated (i, j) and the eight
surrounding nodes will be (i � 1, j � 1), (i � 1, j),. . .. . ., to
(i + 1, j + 1). This means that the solution for any parameter t
at the nodal point (i, j), i.e., ti, j, will be a function of the
values of t at each of the surrounding points ti�1, j�1, etc.
Mathematically, each of the values ti�1, j�1, etc. can be
represented as a Taylor series about the point (i, j), e.g.,

ti�1; j ¼ti; j �
�x

1!

@t
@x

����
i; j

þ �xð Þ2

2!

@2t
@x2

�����
i; j

� �xð Þ3

3!

@3t
@x3

�����
i; j

þ
X1
k¼4

��xð Þk

k!

@kt
@xk

�����
i; j

: ð11Þ

By substituting the Taylor series expansion for each of the
eight surrounding nodes into the equation that is used to
solve for ti, j, an equivalent partial differential equation
(EPDE) is developed.
[14] The EPDE includes derivatives in both time and

space. The unwanted time-derivatives are eliminated
through the repeated differentiation of the original PDE so
that the MEPDE is obtained.
[15] For the purpose of this calculation only, we assume

that density is constant (i.e., g = 0), so that equations (1) and
(2) become:

S
m
k

@p

@t
�r2p ¼ 0; ð12Þ

@c

@t
þ v � rc� Dr2c ¼ 0; ð13Þ

where v = (u, v) = q/e is the fluid velocity. Then, for example,
differentiating Equation (13) with respect to x yields

@2c

@x@t
¼ �u

@2c

@x2
� v

@2c

@x@y
þ D

@3c

@x3
þ D

@3c

@x@2y
; ð14Þ

and differentiating it with respect to y gives

@2c

@y@t
¼ �u

@2c

@x@y
� v

@2c

@y2
þ D

@3c

@y3
þ D

@3c

@2x@y
: ð15Þ

Differentiating (13) with respect to t and substituting (14)
and (15) yields:

@2c

@t2
¼ �u

@2c

@x@t
� v

@2c

@t@y
þ D

@3c

@t@x2
þ D

@3c

@t@y
; ð16Þ

¼ u2
@2c

@x2
þ 2uv

@2c

@x@y
þ v2

@2c

@y2
þ H :O:T : ð17Þ

These spatial equivalents of the time derivatives are
substituted back into the EPDE to yield the MEPDE.
[16] The MEPDE for the pressure equation is

S
m
k

@p

@t
�r2p ¼� �x2ð Þ

12
6sx � 1ð Þ @

4p

@x4
� �yð Þ2

12
6sy � 1
� � @4p

@y4

þ �x�y

2
ffiffiffiffiffiffiffiffiffisxsy

p sx sy þ
1

3

� �
þ sy sy þ

1

3

� �� 	
@4p

@x2@y2

þ O 5f g; ð18Þ

where sx ¼ k
mS

� t
�xð Þ and sy ¼ k

mS
�t
�yð Þ . The MEPDE for the

concentration equation is

@c

@t
þ v � rc� Dr2c ¼ DN

xx

@2c

@x2
þ DN

xy�t
@2c

@x@y
þ DN

yy

@2c

@y2

� 1

�t
�x3

1

6
rx þ rxsx þ

1

3
r3x

� �
@3c

@x3

�

��x2�y
1

2
ry þ rysx þ r2x ry

� �
@3c

@x2@y

��x�y2
1

2
rx þ rxsy þ rxr

2
y

� �
@3c

@x@y2

��y3
1

6
ry þ rysy þ

1

3
r3y

� �
@3c

@y3

	
þ O 4f g; ð19Þ

where the O{4} and O{5} notation refers to the order of the
largest of the remaining terms, rx = u�t/�x, ry = v�t/�y, sx =
D�t/(�x)2 and sy =D�t/(�y)2. Note that the s, r and s terms
are the Courant and diffusion numbers for the equations.
Also, Dxx

N = 1
2
rx
2�x2/�t, Dxy

N = rxry�x�y/�t, and Dyy
N

= 1
2
ry
2�y2/�t are the coefficients of numerical dispersion,

i.e., these are unwanted terms within the approximate
equation which induce artificial dispersion of solute. The
numerical dispersion terms are of the same order as terms
being solved for on the left-hand-side of the equation.
[17] From this it can be seen that the pressure equation

matches the desired equation up to and including all third-
derivative terms. However, there is significant numerical
dispersion within the concentration equation. The extent of
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numerical dispersion varies with the square of the velocity
and with the time step length �t.
[18] We also investigate the effect of mass-lumping on

the MEPDE. When SUTRA is reformulated without mass-
lumping of the time-derivatives, the MEPDE changes. The
amount of numerical dispersion is unchanged, but the
following third-order terms drop out:

1

6�t
rx �xð Þ3@

3c

@x3
þ rx �xð Þ2�y

@3c

@2x@y

�

þry�x �yð Þ2 @3c

@x@2y
þ ry �yð Þ3@

3c

@y3

	
; ð20Þ

suggesting that SUTRA is less accurate because of the
mass-lumping.

2.3. Numerical Stability

[19] We also need to consider the likely range of grid-
spacing and time stepping required to ensure SUTRA’s
numerical stability.
[20] The numerical stability range of a solution technique

can sometimes be determined analytically; for complicated
techniques the stability range can be more difficult to
establish [Hindmarsh et al., 1984; Noye, 1991]. Voss
[1984] suggests a provisional stability constraint of �x �
4b, where b is the longitudinal dispersivity. This implies that
SUTRA is numerically unstable whenever the hydrodynam-
ic dispersivity is zero. However, the code has been used
successfully for simulations without hydrodynamic disper-
sivity, such as the Henry and Elder problems [Voss, 1984;
Voss and Souza, 1987].
[21] We suggest that SUTRA’s approximate stability

range in one dimension is in fact

u�x

Dþ ub
< 4; ð21Þ

as this becomes identical to Voss’s criterion if D � b, but
also permits purely diffusive simulations. This stability
range is suggested simply by analogy with Voss’ criterion,
except that diffusion is taken into account. The denominator
commonly arises as a measure of total dispersive forces in
one-dimensional analyses of constant-velocity flow and
transport, such as those of Simmons [1997]. The term on the
left-hand side is the grid Peclet number, Pe. For one-
dimensional simulations, the grid Peclet number is simply
the ratio of Courant and diffusion numbers, i.e., Pe = r/s. In
the absence of a formal calculation of SUTRA’s stability
range, we will employ equation (20) throughout this paper.

2.4. A Test Code

[22] To illustrate how these numerical issues affect sim-
ulation results, a test code was developed. The test code
permits easy switching between a number of solution
techniques for the concentration equation. It simulates
variable-density groundwater flow and solute transport in
saturated, isotropic and homogeneous aquifers. It always
uses a uniform rectangular mesh, so both finite element and
finite difference techniques can be directly compared. Its
pressure solver is identical to SUTRA’s as its MEPDE,
equation (18), suggests that this is sufficiently accurate.
[23] The main solution options are (1) SUTRA-type, (2)

SUTRA without mass-lumping, (3) SUTRA with numerical
dispersion terms subtracted, (4) SUTRAwithout mass-lump-
ing and with numerical dispersion terms subtracted, (v)

SUTRA with an ‘‘inconsistent velocity’’ formulation, (5) a
Crank-Nicolson finite difference method, and (6) a higher-
order finite difference method. The third option is suggested
by SUTRA’s MEPDE. The numerical dispersion coefficients
are calculated within the code and are then subtracted from
the molecular diffusion coefficient to cancel out the numer-
ical dispersion. That is, instead of the code calculating

D
@2c

x2
þ @2c

@y2

� �
; ð22Þ

it calculates

D� DN
xx

� � @2c

@x2
þ D� DN

yy


 � @2c

@y2
� DN

xy

@2c

@x@y
: ð23Þ

This is similar to the ‘‘correction factor’’ approach used by
Noye and von Trojan [1998].
[24] The fifth option does not employ the ‘‘consistent

velocity’’ formulation of Voss [1984]. Instead, all velocities
are calculated according to equation (8).
[25] The two finite difference methods are given by J. A.

Woods (Numerical accuracy of variable-density groundwater
flow and solute transport simulations, Ph.D. thesis, submitted
to University of Adelaide, Adelaide, South Australia, Aus-
tralia, 2003). These were developed for the (linear) constant-
coefficient advection-diffusion equation. To use them here,
we linearize the PDE for concentration as follows: substitut-
ing Darcy’s law (equation 3) into equation (2) yields

@c

@t
þ 1

e
q� D

r
rr

� �
� rc� Dr2c ¼ 0: ð24Þ

To linearize this at each node and time step, we compare the
nonlinear equation with its linear counterpart, the advection-
diffusion equation,

@f

@t
þ U

@f

@x
þ V

@f

@y
� ax

@2f

@x2
� ay

@2f

@y2
¼ 0; ð25Þ

where U and V can be considered to be locally linearized
velocities, and ax and ay are locally linearized diffusion
coefficients.
[26] Thus the linearized coefficients for the concentration

equation are U = u � (D/r)(@r/@x), V = v � (D/r)(@r/@y),
and ax = ay = D.
[27] These finite difference methods are included because

neither incorporates any numerical dispersion when their
coefficients are constant. Under these circumstances, the
Crank-Nicolson method is second order and unconditionally
stable, while the higher-order method is third order and
numerically stable provided the Courant numbers remain
less than 1. They are likely to be less accurate and numer-
ically stable for other types of flow [Noye, 2000].
[28] In the following sections, we apply these techniques

to two specific test problems, the Gauss pulse test for
constant-density flow and the Elder problem for variable-
density flow.

3. A Constant-Density Test Problem: The Gauss
Pulse

[29] Our first test problem is the Gauss pulse test, which
has been extensively used by Noye in the analysis of finite
difference methods [Leonard and Noye, 1990; Noye, 1990,
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1991; Noye and Hayman, 1992]. It is a type of contaminant
slug problem, similar to those studied by Prickett et al.
[1981] and Javandel et al. [1984]. However, unlike these
others, our version includes molecular diffusion but no
hydrodynamic dispersion. This makes any numerical dis-
persion easier to see.
[30] In groundwater terms, the Gauss pulse test simulates

the release of a narrow slug of solute. The solute is released
into a horizontal, homogeneous, and isotropic aquifer. Flow
within the aquifer is constant, moving from the southwest to
the northeast. Thus the solute slug moves with the flow,
spreading out as it does so because of molecular diffusion.
The mathematical specification of the problem is given in
Table 1. The parameters shown are for illustrative purposes
only and does not correspond to realistic groundwater flow.
[31] The Gauss pulse test has an exact solution [Noye and

Hayman, 1992]:

c x; y; tð Þ ¼ 1

4t þ 1
exp � x� ut � x0ð Þ2þ y� vt � y0ð Þ2

D 4t þ 1ð Þ

" #
; ð26Þ

where (x0, y0) is the initial location of the center of the
solute slug. Thus, for our parameters, the center of the pulse
should shift to (1.5, 1.5) and have a concentration 1/6 of its

original value by the end of the simulation at t = T = 1.25
days.

3.1. Numerical Analysis

[32] The results from Section 2 can be applied here.
Firstly, the amount of numerical dispersion for this problem
and parameter set can be estimated for SUTRA. The
numerical dispersion coefficients are calculated to be Dxx

N =
Dyy

N = 1
2
u2�t = 4 � 10�3m2d�1 and Dxy

N = uv�t = 8 �
10�3m2d�1. Thus the numerical dispersion is of a similar
magnitude to the molecular diffusion coefficient D = 0.01,
suggesting that numerical dispersion will be significant.
[33] We also check the numerical stability of the problem.

The Courant numbers are rx = ry = 0.4 and the diffusion
numbers are sx = sy = 0.2. Thus the grid Peclet number Pe =
2 < 4, which suggests that SUTRA will be numerically
stable for this problem.

3.2. Results

[34] Concentration contours for the final time step are
given in Figure 1. Only the northeast quarter of the domain
is shown. The exact solution, Figure 1a, is perfectly circular,
with a maximum concentration of 1/6. By contrast, the
results of SUTRA, shown in Figure 1b, are elongated in the
direction of flow. The peak concentration is a much lower

Table 1. Input Parameters for the Gauss Pulse Test Problem

Symbol Value Units

Grid Geometry
Grid spacing �x 0.025 m
Grid spacing �y 0.025 m
Time step length �t 0.0125 d
Domain width X 2 m
Domain height Y 2 m
Simulation length T 1.25 d

Parameters
permeability k 1 � 10�9 m2

porosity e 1 (—)
dynamic viscosity m 1 kg m�1 d�1

storativity S 0 Pa�1

diffusivity D 0.01 m2 d�1

density change with concentration g 0 (—)
acceleration due to gravity g 0 m d�2

Initial Conditions
q(x, 0) = (0.8, 0.8)

c(x, 0) = exp � 1

D
x� x0ð Þ2þ y� y0ð Þ2

n o� 	
Boundary Conditions

q = (0.8, 0.8)

c(0, y, t) =
1

4t þ 1
exp � ut þ x0ð Þ2þ y� vt � y0ð Þ2

D 4t þ 1ð Þ

" #

c(X, y, t) =
1

4t þ 1
exp � X � ut � x0ð Þ2þ y� vt � y0ð Þ2

D 4t þ 1ð Þ

" #

c(x, 0, t) =
1

4t þ 1
exp � x� ut � x0ð Þ2þ vt þ y0ð Þ2

D 4t þ 1ð Þ

" #

c(x, Y, t) =
1

4t þ 1
exp � x� ut � x0ð Þ2þ Y � vt � y0ð Þ2

D 4t þ 1ð Þ

" #

Convergence Criteria
Maximum number of iterations per time step 1
Maximum pressure difference between iterations NA
Maximum concentration difference between iterations NA
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0.1308. To test whether this inaccuracy is indeed caused by
numerical dispersion, as suggested by our numerical anal-
ysis, the problem is run again but with the numerical
dispersion removed, as described in section 2.4. The results
for this run are shown in Figure 1c. The contours are much
more circular and the maximum concentration is 0.1687,
which is much closer to the exact value. The contours are
slightly off-center, possibly because of residual third-order
errors. More accurate still, however, is the higher-order
method, as shown in Figure 1d. Its maximum concentration
is 0.1662. Figure 2 shows how the maximum concentration
calculated by SUTRA compares with the exact solution.
This suggests that at a small number of time steps, the
difference between the exact and the SUTRA solution is
significant. As the number of time steps increases, the
difference is smaller, but it does remain at approximately
20% for all time steps.
[35] As a check and comparison, the Gauss problem was

run with different velocities. The exact solution states that
the maximum concentration depends only on the time
elapsed, and not on the velocity. However, the numerical
dispersion terms found in the MEPDE do depend on
velocity. Thus SUTRA should match the exact solution if
the velocity is set to zero. A numerical experiment con-
firmed this. With q = 0, SUTRA produced circular contours
and a maximum concentration of 0.1667 at the final time
step; i.e., SUTRA is accurate when there is no fluid velocity
present.
[36] Thus our numerical analysis and model results are

clearly in agreement. This shows that SUTRA induces
potentially significant numerical dispersion into its solute-
transport simulations. Despite almost two decades of
SUTRA’s use and popularity, this is seldom commented
on explicitly in the literature, possibly because numerical
dispersion alters flow patterns in a manner resembling

hydrodynamic dispersion (an exception is the work by
Watson and Barry [2001], who report problems with
SUTRA’s numerical dispersion in a cross-verification
study). Modelers expect dispersive-type flows and so this
type of numerical error distorts results in a plausible way.
The Gauss pulse test makes numerical dispersion visible
because of its simplicity and circular contours. It satisfies all
the requirements of a good benchmark: it is well-defined,
well-understood and difficult to simulate accurately because
of its sensitivity to numerical dispersion.
[37] We have demonstrated that our analysis techniques

can successfully suggest ways of improving a code. Sub-

Figure 2. Maximum concentration for the Gauss pulse
problem, as calculated exactly (diamonds), by SUTRA
(pluses), or by the modified SUTRA method in which
numerical dispersion is subtracted (squares).

Figure 1. Comparison of concentration plots for the final time step of the Gauss pulse test as calculated
(a) exactly, (b) by SUTRA, (c) by SUTRA without numerical dispersion, and (d) by the higher-order
method. Concentration is in units of kg/kg. Distances are in terms of nodes.
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tracting numerical dispersion leads to substantial improve-
ment in code accuracy for this type of simple, linear
problem.

4. A Variable-Density Test Case: The Elder
Problem

[38] In this section we no longer assume that fluid density
is constant. Instead, we let fluid density vary linearly with
solute concentration and solve nonlinear PDEs (1) and (2).
This type of solute transport is very common. Examples
include seawater intrusion [Bear et al., 1999], leachate
plumes [Koch and Zhang, 1992] and saline disposal basins
[Narayan and Armstrong, 1995].
[39] Unfortunately, the equations required to simulate this

type of flow are nonlinear. This has three main effects.
Firstly, there are only a few known problems of this type for
which there are any analytic results, such as those of van
Duijn and Schotting [1997], Nield and Bejan [1992], and
Bear et al. [1999]. Most of these are either unsuitable as
benchmark problems because of their unrealistic (e.g.,
infinite) boundary conditions or are yet to be considered
as potential test problems. This means that benchmark tests
need to be derived from laboratory experiments or through
comparison with other numerical codes, introducing doubts
about the accuracy of the results against which a code is

being compared. Secondly, this makes accurate numerical
simulation much more prone to error. Finally, analysis
techniques used to gauge numerical error are often no
longer strictly valid. All of these factors combine to make
simulation of variable-density flow much more difficult
than constant-density flow. Nevertheless, we wish to show
in this section that useful information about nonlinear PDEs
can be found through a combination of numerical analysis,
grid resolution studies and test problems.
[40] The test problem in this case is Elder’s ‘‘short-

heater’’ problem, a heat flow problem [Elder, 1967] which
was converted for use with solute-transport codes by Voss
and Souza [1987]. It is one of the standard benchmark
problems for variable-density flow and transport. The prob-
lem is described in Table 2 and Figure 3.
[41] There has been much discussion in the literature

about the results of the Elder problem. Elder’s original
numerical solution shows complicated fingering which
develops into convection cells separated by a downwelling
of solute and SUTRA matches this reasonably well [Voss
and Souza, 1987]. However, Oldenburg and Pruess [1995]
note that the Elder’s numerical results seem to contradict the
published photographs of his laboratory work [Elder, 1967].
These show no indication of any central downwelling.
Moreover, they perform a grid resolution study. When using
the same grid as Voss and Souza’s, the results from the two

Table 2. Input Parameters for the Elder Problem

Symbol Value Units

Grid Geometry
Grid spacing �x 14.28 m
Grid spacing �y 6 m
Time step length �t 2.628 � 106 s
Domain width X 600 m
Domain height Y 150 m
Simulation length T 20 years

Parameters
Permeability k 4.845 � 10�13 m2

Porosity e 0.1 (—)
Dynamic viscosity m 10�3 kg m�1 s�1

Storativity S 0 Pa�1

Diffusivity D 3.565 � 10�6 m2 s�1

Density change with concentration g 0.2 (—)
acceleration due to gravity g �9.81 m s�2

Initial Conditions
Hydrostatic pressure
c(x, y, 0) = 0

Boundary Conditions
v(0, y, t) = 0
v(600, y, t) = 0
u(x, 0, t) = 0
u(x, 150, t) = 0, x 6¼ 0, x 6¼ 600
p(0, 150, t) = 0
p(600, 150, t) = 0
@c/@x(0, y, t) = 0
@c/@x(600, y, t) = 0
@c/@y(x, 0, t) = 0
@c/@y(x, 150, t) = 0, 0 � x � 150, 450 � x � 600
c(x, 150, t) = 1, 150 � x � 450

Convergence Criteria
Maximum number of iterations per time step 20
Maximum pressure difference between iterations 500 kg m�1s�2

Maximum concentration difference between iterations 0.01 (—)
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numerical codes match well. Using a finer grid produces
results more like Elder’s laboratory photographs, in that
there is an upwelling of fluid in the center of the flow and
hence no central plume. Oldenburg and Pruess [1995]
conjecture that their finer grid simulation is more accurate
than either Elder’s semianalytic results or Voss and Souza’s
numerical results.
[42] These results have since been confirmed by others,

e.g., Kolditz et al. [1997], Holzbecher [1998], Ackerer et al.
[1999], Prasad [2000], and Oltean and Buès [2001]. How-
ever, Frolkovič and Schepper [2000] consider even finer
grids. They show that for even higher grid resolutions a
small downwelling of solute occurs in the center. An
unpublished study (H.-J. Diersch, The Elder problem,
unpublished results, 2000) using another code shows similar
results. This does seem to contradict Elder’s laboratory
photographs, but it is worth noting that the photographs
show a quite asymmetric flow, despite the symmetry of the
problem. This is presumed to be due to experimental
variability and demonstrates the difficulty in using labora-
tory results as a benchmark. Thus the extent to which either
the laboratory work or Elder’s numerical solution can be
trusted remains an open question.
[43] A very fine grid is also used in another recent paper

[Boufadel et al., 1999]. Unlike Frolkovič and Schepper
[2000], Boufadel et al.’s results do not show a central
downwelling, possibly because their numerical technique
seems to be fairly inaccurate. At lower grid resolutions their
code produces distinctly asymmetric results.
[44] Thus results to date show that coarse grids and very

fine grids generally yield a downwelling, while finer grids
yield an upwelling. It is possible that yet finer grids might
yield other results, although eventually the grid size would
become so small that roundoff error would dominate [May
and Noye, 1984].
[45] What is clear is that simulation results for the Elder

problem change with grid size, time stepping scheme and
numerical solution method. Thus one can presume that the
problem is sensitive to numerical error. This is supported by
Frolkovič and Schepper [2000] who convincingly demon-
strate that even a small change in the problem’s initial
conditions may lead to qualitative differences in long-term
behavior. However, sensitivity to to numerical error is a
useful quality in a benchmark problem only if the problem

has a verified and precise solution. The Elder problem lacks
this at present, which limits its usefulness as a benchmark.
This may change if the very fine mesh results of Frolkovič
and Schepper [2000] are replicated.
[46] In fact, there is a good reason why the simulation

results should be expected to vary with grid size, as the grid
size alters both initial and boundary conditions. Say that a
numerical scheme assumes that concentration varies verti-
cally across an element according to function g(y, t) (typ-
ically a linear or quadratic function). The amount of solute
initially present in an element under the upper constant-
concentration boundary is

�x

Z 150

150��y

g y; 0ð Þ dy: ð27Þ

If, for example, concentration varies linearly across an
element, then g(y, 0) = 1 + (y � 150)/�y. Thus the amount
of solute in the element is

�x

Z 150

150��y

1þ y� 150

�y

� �
dy ¼ 1

2
�x�y: ð28Þ

That is, the initial amount of solute present in the model
domain depends on the grid size. Also, whenever a
discontinuity exists in the boundary conditions, the
implementation of the boundary condition at the point of
discontinuity will be grid dependent. Konikow et al. [1997]
have noted similar discrepancies in the specification of
initial conditions for the ‘‘salt-dome’’ problem.
[47] The discontinuous pressure boundary at the top also

presents a problem. Depending on the grid size and the
interpolation method used, a code’s interpolation between
the constant-pressure and the neighboring no-flow node will
differ. Thus every time a modeler varies the grid spacing in
a grid resolution study, the physical problem is altered,
leading to variations in the simulated solution. These
variations may occur anywhere in the solution regime.

4.1. Numerical Analysis

[48] To examine SUTRA’s numerical stability and disper-
sion, we need to know what velocities occur in the Elder
simulation. From a preliminary model run, the maximum

Figure 3. The initial and boundary conditions of the Elder problem.
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magnitude of the velocity is approximately 3 � 10�6ms�1

while a more typical velocity is 5 � 10�7ms�1.
[49] Thus for a month-long time step (2.628 � 106s), as

used by Voss and Souza [1987], the maximum numerical
dispersion coefficients will be Dxy

N = ±2.37 � 10�5m2s�1

and Dxx
N = Dyy

N = 1.18 � 10�5m2s�1 which are an order of
magnitude larger than the molecular diffusion coefficient, as
D = 3.565 � 10�6m2s�1. At more typical velocities, Dxy

N =
±6.570 � 10�7m2s�1 and Dxx

N = Dyy
N = 3.285 � 10�7m2s�1,

which is smaller than the diffusion coefficient. This sug-
gests that numerical dispersion is important wherever the
flow velocity is particularly high.
[50] SUTRA’s numerical stability depends on the grid and

time stepping schemes used. Here we follow Frolkovič and
Schepper [2000], dividing the problem domain into 22L+1

elements for the half-domain, where L denotes the ‘‘grid
level.’’ We consider L = 4, 5, 6. The time step length is
either 1 month or 0.1 months.
[51] Based on the maximum velocity, Pe = u�x/D =

0.842�x, so to keep Pe < 4 as required for stability, �x <
4.75 m (e.g., a grid level of 5 or higher is required). On the
basis of a more typical velocity of 5 � 10�7, �x < 28.52 m,
i.e., for all but the coarsest grids (grid levels 0–2).
[52] However, this simple stability analysis must be

modified by what we know about numerical dispersion,
which effectively changes the molecular diffusion coeffi-
cient and thus the grid Peclet number. For a worst-case
(maximum velocity, larger time step) scenario, the effective
diffusion coefficient Dxx

E = 3.565 � 10�6 + 1.18 � 10�5 =
1.54 � 10�5m2s�1. This makes the stability criterion less
severe, so that �x < 20.53 m and not �x < 4.75 m, so the
numerical dispersion distorts the flow but promotes numer-
ical stability. It suggests that grid level 4 will be numerically
stable for SUTRA after all. In addition, for grid levels >4
the effective diffusion number is greater than the Courant
number, so the simulation becomes diffusion-dominated
and not advection-dominated.
[53] For a more typical velocity of 5 � 10�7ms�1 the

effective coefficients are less severe, i.e., Dxx
E = 3.894 �

10�6m2s�1 (�x < 31.15 m), so there is comparatively little
change to SUTRA’s stability criterion.
[54] Thus for Elder’s problem run with time steps 1

month long, SUTRA’s numerical dispersion is only impor-
tant at points of high velocity, where it increases the
effective diffusion coefficient but permits a larger stability
range and thus coarser grids.

4.2. Results

[55] The numerical stability of the simulations is much as
expected. SUTRA is indeed numerically stable for all the
grid levels considered here. The Crank-Nicolson method is
almost always stable, but does not converge for �t = 0.1
month and grid level 6. The higher-order method, being less
numerically stable than SUTRA, only converges when both
grid steps and time steps are small (�t = 0.1 month and grid
levels 6 and 7). The ‘‘inconsistent velocity’’ method always
leads to nonconvergence, vindicating the decision of Voss
[1984] to use the ‘‘consistent’’ version.
[56] Regrettably, SUTRA with numerical dispersion sub-

tracted proves to be numerically unstable, failing to
converge for �t = 1 month. For smaller time steps, its
results are theoretically very close to the standard SUTRA
method and our simulation results agree with this. Thus,

while this method proved very successful for the Gauss
pulse problem, it is much less satisfactory for complex,
nonlinear problems.
[57] Instead, the extent of numerical dispersion can be

gauged through varying the time step length, as the numer-
ical dispersion coefficients vary with �t. A comparison is
given in Figure 4. The main difference is that the outer
plume (representing the 0.2 concentration contour) is
shaped differently, which suggests that the greatest veloci-
ties occur in this area. However, numerical dispersion has
minimal impact throughout most of the simulation, where
the velocities are reasonably low. The SUTRA method
without mass-lumping and the Crank-Nicolson method
show similar behavior.
[58] Importantly, none of our methods replicate the

results of Frolkovič and Schepper [2000] and H. J.
Diersch (unpublished results, 2000), in their switch from
a central downwelling (grid level 4) to an upwelling
(level 5) and thence to a downwelling again (level 6).
Figure 5 summarizes some of our results. At level 4, only
SUTRA shows a downwelling at the center (right-hand
side of Figure 5a). Without mass lumping, SUTRA
produces a central upwelling (Figure 5d), as does the
Crank-Nicolson method (Figure 5g). At level 5, SUTRA
with and without mass lumping show an upwelling (Figures
5b and 5e), although the plumes are further apart without
mass-lumping. However, the Crank-Nicolson method still
shows a downwelling (Figure 5h). The direction of flow
does not change as we move to grid level 6 (Figures 5c, 5f,
and 5i); indeed SUTRA without mass lumping may have
achieved grid convergence. Only the higher-order method
produces results similar to those of H. J. Diersch (unpub-
lished results, 2000) (Figure 5j). There still does not appear
to be a unique solution to the Elder problem, even at higher
grid levels and smaller time step sizes. As Frolkovič and
Schepper [2000] suggest, the Elder problem may be truly
indeterminate.
[59] If this is true, then what does this imply about the use

of the Elder problem as a benchmark? While it is well-
defined and difficult to simulate, it does not have well-
understood and consistent results. It is undeniably a much
more stringent test than the comparable Henry problem

Figure 4. The 0.2 and 0.6 concentration contours for the
Elder problem after 4 years of simulated time at grid level 5
using SUTRA with time steps of (a) 1 month or (b) 0.1
month. Axes are labeled in terms of nodes.
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[Henry, 1964; Croucher and O’Sullivan, 1995; Benson et
al., 1998; Voss and Souza, 1987] and so remains valuable,
but if we expect a benchmark to distinguish between good
and better methods of simulation, then the Elder problem is
of limited usefulness. Codes capable of simulating the Elder
problem do not necessarily agree on the results of other
problems [Simmons et al., 1999; Woods et al., 1999], so it is
clear that there is a need for even more rigorous test
problems.
[60] Relating our results back to the numerical analysis,

we note several important points. Firstly, compare the
qualitatively different results of Figures 5a and 5d. They
differ in the number of plumes and in the plumes’ shape and
extent. Yet the only difference in the solution methods is
that Figure 5a has used mass-lumping and 5d has not.
According to our linear analysis of their MEPDEs, these
techniques differ only in their third order error terms. Third
order error terms are usually dismissed as too small to have

an effect on groundwater flow simulations, yet for a
complicated and nonlinear problem such as Elder’s, they
evidently can have a substantial effect.
[61] Second-order errors (i.e., numerical dispersion) usu-

ally increase with time step length, so if second-order
errors are more important than third-order ones, then we
would expect different solution methods to yield similar
results provided that the time step length is kept small.
This does not occur with the Elder problem. The SUTRA
and Crank-Nicolson methods differ in their second-order
errors, but their results do not resemble each other’s even
for small time steps. We suggest that this is due to the
sensitivity of the problem to plume-triggering processes
and the nonlinear nature of the problem. Even small
perturbations at the upper boundary may trigger a plume
or a local vortex.
[62] Thus it seems that for nonlinear problems, even

seemingly negligible errors can alter the shape of a flow.

Figure 5. The 0.2 and 0.6 concentration contours for the Elder problem after 4 years of simulated time
with �t = 0.1 month for (a–c) SUTRA at grid levels 4, 5, 6, (d–f) SUTRAwithout mass-lumping at grid
levels 4, 5, 6, (g–i) Crank-Nicolson method at grid levels 4, 5, 6, and (j) the higher-order method at grid
level 6. Axes are labeled in terms of nodes. Because of the symmetry of the results, only the left half of
the domain is shown.
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This has important implications, especially when model
results are part of an environmental management plan.

5. Conclusions

[63] Numerical analysis, grid resolution studies and test
problems can be fruitfully combined in the investigation of
numerical error in simulation codes. A technique adapted
from FDMs (the MEPDE) can suggest ways of improving
existing codes, such as SUTRA. In this paper we have
shown that SUTRA can be improved for simple linear
problems and regular grids when numerical dispersion is
subtracted. Deriving an appropriate expression for numeri-
cal dispersion for irregular grids is more difficult and it is
likely that there are more efficient ways of addressing this
computationally. For more complex simulations, removing
mass lumping may be advantageous for little computational
cost. Similarly, calculation of numerical stability criteria and
their interaction with numerical dispersion may improve
prediction of suitable grid and time stepping regimes. While
our analysis is of SUTRA, similar insights may be achieved
through the analysis of other codes.
[64] Some of this information may be usefully incorpo-

rated into a simulation code, warning the user of probable
numerical instability (as some codes already do) or speci-
fying the amount of numerical dispersion present—although
one hopes that through the use of the MEPDE, code
developers might avoid numerically dispersive methods
altogether.
[65] However, some prefer numerically dispersive meth-

ods because of their frequently enhanced numerical stability
(as demonstrated in this paper). For example, Frolkovič and
Schepper [2000] argue that their exponential upwind scheme
is superior partly because their calculated concentration
never strays out of bounds (i.e., 0 � c � 1 everywhere).
While this makes physical sense, Zoppou and Roberts
[1996] have elegantly demonstrated that some higher-order
methods must be expected to go out of bounds to a small
degree at sharp interfaces but otherwise show a much better
match to exact solutions. Upwind schemes, almost by
definition, artificially increase the dispersion in a model:
that is, they alter the physical problem being simulated.
[66] This behavior may be critical in complex, nonlinear

simulations. We have demonstrated that even third order
error terms can substantially affect simulation results.
[67] As well as numerical analysis, new benchmark

problems, such as the Gauss pulse test described here, allow
a modeler to better gauge the accuracy of a code. Never-
theless, much still needs to be done on the verification of
variable-density flow simulators. This is likely to require the
development of further mathematical tools and the selection
of better benchmark tests. This paper has outlined a few
starting possibilities.
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lian Postgraduate Award and through the CRC for Catchment Hydrology.
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