Full Citation Details:
RECENT DEVELOPMENTS IN VICTORIAN PREHISTORY

A Conference on 'Aboriginal Man and Environment in Southeastern Victoria: Recent Developments in Victorian Prehistory' was held at the University of Melbourne on 27-29 November, 1975, and drew a total enrolment of 143. John McNally, Director of the National Museum of Victoria, officially opened proceedings, the first two days of which were devoted to invited research papers. The final day (a Saturday) featured an all-day field trip to the Keilor Museum, the Bain's Quarry and Dry Creek archaeological sites near Keilor, and the Lancefield swamp site.

Following is a summary of Conference papers, in the order in which they were presented.

'Late Pleistocene Hominid Sites in Northern Victoria'

(By P. Macumber, Victorian Department of Mines.)

Eight of the nine Pleistocene hominid sites currently known in Victoria (viz. Bourkes Bridge, Cohuna, Gunbower, Kow Swamp Main Site, Kow Swamp 1, Kow Swamp 9, Lake Boga, and Mangat) are situated on the northern Riverine Plains, within a radius of 60 km of Kerang. These sites lie on or adjacent to a major Late Pleistocene flow path of the Murray-Goulburn system, in a region particularly suited to human survival: climatic, geomorphic, and hydrological factors combined to produce a range of potentially exploitable ecosystems, some with useful petrological resources. The existence of so many hominid sites in this region is not fortuitous, as high groundwater levels and local soil conditions promoted mineralisation and hence preservation of bone.

'Archaeological Investigation of the "Mound People" of Western Victoria'

(By P. Coutts, R. Frank, M. McIlwraith, and D. Witter, Archaeological and Aboriginal Relics Office, Melbourne.)

A survey of the Willaura map sheet section of the Hopkins River revealed that mound sites originally were situated so as to permit optimal exploitation of all available resources contained within a variety of biotic communities. This is clearly portrayed by the faunal and lithic assemblages from two excavated sites. Artifacts, human burials, and stratigraphic and structural details indicate that both of these artificially-produced mounds served as general living sites and that occupation took place, at least in part, during spring.

'The Possibility of Site Locational Analysis in the Ararat Area'

(By D. Byrne, Department of Anthropology, University of Western Australia.)

This paper is complementary to the preceding one, and describes sites investigated in the Ararat area, immediately north of the Willaura map sheet. In addition to mounds and mound
clusters, the 92 sites recorded included quarries and open camps. A detailed locational analysis was carried out for a localised cluster of mounds near Lake Lonsdale.

'Historical Background and Geology of the Lancefield Megafaunal Site'

(By R. Glenie, Australian Groundwater Consultants, Melbourne.)

A megafaunal swamp site at Lancefield first discovered in 1843 was relocated in 1973 as the result of a carefully researched field programme. Because a palaeozoological excavation at the site by a Monash University team in 1974 turned up human artifactual material, the University of Sydney was invited to carry out an archaeological excavation the following year. This latter excavation revealed three different lithological units, a black clay, the bone bed, and a greenish clay (in that sequence, from the surface). The stratigraphic relationship of the bone bed to the two clay units is still obscure.

'The Past Vegetation around the Lancefield Bone Bed Site'

(By P. Ladd, School of Botany, University of Melbourne.)

Pollen from the Lancefield Swamp reveals that the surrounding plains were covered in grassland when the bone bed was established (during Period L1) in what was a shallow pool, occupied by water plants. The vegetation surrounding the pool during the subsequent L2 and L3 prehistoric periods was characterised by scrub and sedge species respectively. L4 marked the appearance of Europeans in the area.

'Analysis of Fauna from Lancefield'

(By D. Horton, Australian Institute of Aboriginal Studies, Canberra.)

More than 7000 bone fragments from the Lancefield Swamp were analysed to obtain information on two things: biology of the animals present, and mode of bone accumulation. Only six different species accounted for almost all bones recovered, with one species, *Macropus titan*, contributing around 90% of the total. All parts of the body were represented, and very few of the macropods were juveniles. Some palaeopathological conditions observed. Many of the recovered bones were broken, but others contained paired incisions which were interpreted as *Thylacooleo* tooth-marks. The Lancefield bone bed can currently be explained in terms of predation by man and/or carnivores.

'Pleistocene Man and Extinct Marsupials - the Evidence at Lancefield'

(By R.V.S. Wright, Anthropology Department, University of Sydney.)

Two metre squares were excavated at the Lancefield site in 1975, and the total stratigraphic section and positioning of artifacts studied. Two radiocarbon dates of around 12,500 and
16,500 BP were obtained from bone protein and apatite respectively, but biogeographical data suggest these are far too young. The micro-location of pollen in the excavations indicates that there has been little vertical movement of artifacts through time.

'Victorian Aborigines and Coastal Processes'

(By E.D. Gill, Division of Applied Geomechanics, CSIRO, Melbourne.)
Despite the relative abundance of prehistoric Aboriginal skeletal material along the Murray River (where soil conditions led to the exceptional preservation of bone), Victoria's greatest prehistoric populations were along the coasts. However, this is not apparent from the archaeological evidence, because sea level oscillations during the last 10,000 years (there were about ten) have obliterated many sites. Carbon dates from sites that remain show a periodicity that relates to the pattern of marine advances and retreats.

'Quaternary Geology and Environments at the Dry Creek Sites near Keilor'

(By J. Anderson and E.B. Joyce, Geology Department, University of Melbourne.)
Sedimentological examination of the geological section beneath the Doutta Galla Silt of the Keilor Terrace, as exposed in Dry Creek, revealed three major Arundel Terrace depositional units: the Mottled Clays, Chocolate Clay, and D Clay. These date from 18-20,000 BP back beyond 40,000 years, and provide a geological framework within which archaeological material excavated by Dr Gallus may be placed.

'The Stratigraphy of the pre-Younger Palaeolithic Industries at the Keilor Site'

(By A. Gallus, Archaeological Society of Victoria.)
As a result of 25 years of fieldwork, a detailed stratigraphy has been established for the terrace system at the junction of Dry Creek and the Maribyrnong River. Artifacts belonging to two distinct assemblages were excavated from slightly different stratigraphic positions at the base of the Arundel Terrace. Both assemblages are estimated to date back 60,000 or 70,000 years. Artifacts from a third assemblage have been recovered from the bed of Dry Creek, and are presumed to date to Middle Pleistocene times. This is also the dating attributed to the artifacts found amongst the gravels of an old river bed at nearby Bain's Quarry.
'New Data from Old Stones: Investigation of the Distribution of Axes from Victoria's "Greenstone" Quarries'

(By I. McBryde, Department of Prehistory and Anthropology, The Australian National University.)

Analyses of hand-specimens, thin sections, and elemental composition are being used to source southeastern Australian stone axes derived from Victorian 'greenstone' quarries. Ethnographic data suggest that gift-exchange and barter can account, to some extent, for prehistoric distribution patterns.

'Aboriginal Settlement and Land Use in South Western Victoria: a Report on Current Field Work'

(By H. Lourandos, Department of Anthropology, University of Sydney.)

In the course of his journeys through Western Victoria from 1836 on, Robinson recorded large-scale drainage systems, well-built semi-permanent villages, and large seasonal concentrations of population. Part of a drainage ditch linking two swamps has already been excavated, and further fieldwork pertaining to all three aspects of Robinson's observations is required.

'Victorian Archaeology: Prospects for the Future'

(By D.W. Orchiston, History Department, University of Melbourne.)

Despite its small size and a paucity of trained archaeologists, Victoria has much to offer Australian prehistory. There are five areas in which an important contribution can be made, and these are: the study of fossil man, the 'Gambierian Industry', megafaunal extinctions, and Pleistocene-Holocene coastal processes and their ecological effects; and the sourcing of stone implements. Significant contributions can also be made in the fields of ethnohistory and historical archaeology. The future prospects for Victorian archaeology are closely bound up with archaeological developments currently taking place within Melbourne and La Trobe Universities, the Relics Office, the Council of Adult Education, and the Archaeological Society of Victoria.

* * * * *

One of the highlights of the Conference was a Public Lecture on the Thursday evening, when nearly 200 people were treated to 'The Significance of Australian Prehistory: A Personal Appraisal' by Professor John Mulvaney.

All Conference papers, except those by Byrne, Wright, McBryde, Orchiston, and Mulvaney, are scheduled to appear in 1976 issues of The Artefact (see details elsewhere in this Newsletter).

D. Wayne Orchiston
History Department
University of Melbourne