This is an Accepted Manuscript of an article: Emily Dalton, Natasha A. Lannin, Kate Laver, Leo Ross, Stephen Ashford, Annie McCluskey & Anne Cusick (2016): Validity, reliability and ease of use of the disabilities of arm, shoulder and hand questionnaire in adults following stroke, Disability and Rehabilitation, DOI: 10.1080/09638288.2016.1229364 published by Taylor & Francis in Disability and Rehabilitation 21 October 2016, available online: http://www.tandfonline.com/10.1080/09638288.2016.1229364

Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group
Abstract

Purpose: The Disabilities of Arm, Shoulder and Hand (DASH) questionnaire is a patient reported outcome measure for evaluating upper limb function in people with musculoskeletal conditions. While the DASH has good psychometric properties when used with people with musculoskeletal conditions, it has not been tested with adults after stroke.

Methods: Data for n=61 adults following stroke (aged 32 to 93 years, 44% male) were analysed to test validity and reliability of the DASH for use with a stroke population. Data included demographic and clinical attributes, DASH scores (baseline and 4 weeks later) and Patient Rated Wrist Evaluation (PRWE) measures.

Results: Internal consistency was good (Cronbach alpha 0.92, SEM 6.65). Factor analysis and Rasch modelling suggested that the questionnaire comprised three subscales: pain, impact and function. Concurrent validity between the DASH and PRWE (Spearman’s Rho $r_s=0.41$) was moderate. The scale was perceived by clinicians to be useful, quick and simple to administer. The DASH had low four-week test-retest reliability (ICC 0.56 [95% CI 0.05-0.79]).

Conclusion: The DASH is considered to have acceptable validity when used with adults following stroke. Test-retest reliability was low but further research is needed to establish whether this is a result of condition-related change or the stability of the measure.

Key Words: assessment, measurement, function, participation, psychometric
Introduction

Stroke is the third most common cause of death and the leading cause of adult disability in the Western world [1]. Upper limb motor impairment is highly prevalent and disabling, affecting 80% of adults after stroke [2,3]. Participation in upper limb rehabilitation therapy may improve function [4] hence, therapists dedicate a large proportion of therapy time to retraining upper limb movement and use.

The process of upper limb rehabilitation commences with assessment and measurement of function [5]. There are a number of outcome measures that may be used to quantify upper limb function post stroke [6,7]. One of these is the Disabilities Arm, Shoulder and Hand (DASH) questionnaire [8]. Outcome measures need to be valid, reliable and clinically useful [9]. Although the DASH questionnaire is used clinically with adults after stroke [10] there is limited information available on the psychometric properties or clinical utility for its use with this population.

The DASH is a 30 item self-report questionnaire, initially designed to assess patient rated upper limb impairment and impact on activity in individuals who have musculoskeletal upper limb conditions [8]. The total score is 100 and higher scores indicate greater disability. Psychometric examination of the DASH with musculoskeletal populations (arthritis, shoulder and elbow arthroplasty, Colles fracture, proximal humeral fracture and carpal tunnel syndrome) found it to be reliable [11-15], valid [16-19] and simple to administer [16,20-22]. Specifically, the DASH had good internal consistency [11,14,15], and test retest reliability [11-13] in these varied musculoskeletal populations. Construct validity was also reportedly acceptable when compared to other upper limb outcome measurement tools such as Shoulder, Pain and Disability Index [16,19], American Shoulder and Elbow Surgeons Standardised
Shoulder Assessment [16,17], and Brigham and Women’s Carpal Tunnel Questionnaire [17]. Convergent validity with the Patient Rated Wrist Evaluation (PRWE) was found to be high and statistically significant in patients with a Colles fracture [18], suggesting the tools measure comparable constructs. Importantly for clinical use, the DASH has also been found to be simple for therapists and patient participants to complete and score; the time taken to complete the DASH ranges from three minutes to 13 minutes [16,20-22] making its use in rehabilitation settings attractive.

DASH items have been proposed to have face validity, acceptable for measuring post-stroke upper limb impairment [23]. In addition, the DASH has an activity-based focus with items such as meal preparation and dressing. As upper limb rehabilitation programs are increasingly directed towards attainment of functional goals in every-day contexts, the use of the DASH as a standardised measures that can capture performance across impairment, activity and participation has clinically arisen. In addition, a small number of studies have used the DASH as an outcome measure with adults after stroke [24,25]. Researchers and clinicians working with people with stroke have identified the DASH questionnaire is a potentially useful measurement tool [23,26]. However, to date, no published research has examined the applicability of the DASH post stroke. The aim of this study was therefore to analyse the validity, reliability and ease of use of the DASH in a post-stroke adult population.

Method

Design: This study evaluated psychometric properties of the DASH using previously collected data from three published research studies [10,27,28] in which authors (LR, NL & SA) were lead investigators. Following ethics committee approval, data from the three studies (and their associated databases) were merged into one database that contained all
common items for analyses. We were interested in exploring aspects of reliability and validity that are important in rehabilitation settings and could be investigated using our dataset. We commenced data analyses without assumptions or specific hypotheses about the psychometric properties of the tool. Data were extracted for post-stroke adult-participants and the DASH was examined for internal consistency, concurrent validity, test-retest reliability and ease of use.

Sample: All participants were adults following stroke. They were participants in one of three studies recruited from acute, sub-acute and rehabilitation facilities between October 2002 and November 2006. All three studies were set in rehabilitation settings (in/outpatient continuum) in publically-funded (government) services ensuring consistent (albeit limited) access to medical treatment across participants. In addition, all the three studies had consistent eligibility criteria: 18 years or over, able to give informed consent (or a consultee procedure used in accordance with ethical requirements) with a history of a single stroke that resulted in weakness or paralysis of the upper limb, and able to understand English. In all three studies, participants were excluded if they had musculoskeletal impairments of their affected upper limb, and in two of the studies patients were excluded if they had a Mini Mental State Exam score (MMSE) of less than 24 out of 30 [28,30]. Please refer to Figure 1 below for a breakdown of sample participants and the data used for psychometric testing. Cases with missing data were excluded from the analyses.

Insert figure 1 about here

Demographic variables consistently collected across all three studies and included in analyses were age, gender and level of education. Clinical characteristics included were hand dominance, the number of days post-stroke when the DASH baseline measure was administered, MMSE Scores, UL-MAS scores, and the full test items of the baseline DASH
and PRWE (when administered). Follow-up DASH scores of participants in the control groups of two studies [27,28] were also included to permit preliminary investigation of test-retest reliability of the DASH tool.

The MMSE [29] is a standardised cognitive assessment tool. The MMSE is routinely used in acute and longer term rehabilitation settings to monitor cognitive function in adults after stroke [29,32]. The UL-MAS [33,34] is one component of the Motor Assessment Scale (MAS) and involves assessment of simple functional tasks performed by the upper limb. It has good psychometric evidence in post stroke populations [33]. The PRWE [35] is a 15 item patient self report questionnaire designed to assess the pain and function of individuals experiencing a musculoskeletal wrist condition [35]. It has psychometric evidence demonstrating good reliability and validity [36,37] and convergent validity with the DASH in musculoskeletal populations [18].

We were interested in exploring aspects of reliability and validity that are important in rehabilitation settings and could be investigated using the combined dataset. Given that the DASH is used in clinical practice, the face validity of the DASH was not assessed since its continued clinical use suggests that the DASH captures important aspects of upper limb ability in stroke survivors.

Data analysis: Data were analysed using SPSS [31] and the Winsteps program [38]. Demographic and clinical data were analysed using descriptive statistics. Scale characteristics were examined as follows. Internal Consistency was examined using both traditional test statistics and Rasch approaches. Cronbach’s alpha [39] was calculated to indicate the internal consistency reliability of DASH items; alpha ≥ 0.95 was considered desirable for clinical use.
Standard error of measurement (SEM) was also calculated by applying the Cronbach’s alpha score and standard deviation to Nunnally and Bernstein’s (1996) SEM formula. This provides an indication of internal consistency independent of the population measured [41]. The fit of items and people was also examined using Rasch analysis. Rasch analysis is a means of converting ordinal data to interval data and creating a hierarchy; these fit statistics allow examination of the proportion of people whose data meet the Rasch assumption that people with greater arm movement (less disability) will be more likely to receive lower DASH item subscale scores. The unidimensionality of the DASH items were examined through goodness-of-fit statistics generated by the Rasch analysis. These fit statistics indicate how well the items in the DASH conformed to the assumptions of the Rasch model; infit statistics describe the fit of items near the middle of the scale, and outfit statistics describe the fit of items near the extremes of the scale. The desired values of the mean square and t statistic are 1 and 0, respectively. For this study, mean square values of 0.6 to 1.4 were considered acceptable, with a t statistic of ±2, because these correspond with 95% fit [41]. In the present study, those items that did not fit were investigated to determine whether they shared any common characteristics.

Concurrent validity was examined using Spearman’s Rho (due to the ordinal nature of the data) to determine the strength of correlation between the two tools [42]; between 0.0 and 0.30 indicates weak evidence for validity, 0.30-0.59 indicates moderate evidence and a score of 0.59 or above indicates strong evidence for validity [43]. The total DASH and PRWE scores were compared, as well as the pain severity and functional subscale scores.

Test retest reliability was measured using the Intraclass Correlation Coefficient (ICC) [44]. If the correlations were above 0.90, reliability was excellent and low test retest reliability if the
ICC was below 0.70 [45]. Item total correlation was also conducted to determine whether the DASH questionnaire was able to discriminate between high and low performing participants [45]. Pearson’s correlation coefficient was used to measure the item total correlation. Research suggests that a Pearson’s correlation coefficient score > 0.30 indicates that the item is discriminating between high and low performing participants [45-47].

Ease of use was determined based on the therapist’s perception of the tool related to ease of use and ease of scoring. We also used the therapist’s estimations of the time taken to administer the tool. All data were presented descriptively.

Results

Table 1 presents demographic and clinical data from the sample, divided into two analysis groups. Both groups were statistically similar (p>0.05) for all demographic variables with the exception of severity of hemiplegia as measured by MAS- sample B had contained a greater proportion of people with dense hemiplegia compared to sample A (81% vs 67%).

Insert table 1 about here

Internal consistency: The DASH was found to have good internal consistency (Cronbach alpha=0.92, SEM=6.65). An initial calibration of the DASH items identified a violation of the unidimensionality assumption. To examine the factor structure of the items in this population, an exploratory factor analysis was conducted using polychoric correlations and unweighted least squares estimation [48]. This analysis identified three factors in the data (21 DASH items measuring function, six DASH items measuring pain, and three DASH items measuring impact). Separate calibrations for these three factors were conducted. Examined were person and item separation, item fit to the Rasch model, and residual principal
component analysis (PCA). The quality of the measurement was assessed using the following criteria: separation greater than 2.00 (reliability=0.80) [41]; infit mean square for these rating scale items >0.70 and <1.40 [41]; and for evidence of unidimensionality, more than 60% of variance explained by the measure and an eigenvalue <3 for the contrasts [49]. When all 30 items were calibrated, the measure explained 43.3% of the observed variance and the eigenvalue for the first contrast (function versus pain/impact items) was 5.4. When calibrated separately, the evidence of unidimensionality was better but in each case the percent of variance explained was lower than desired (ranging from 44.0 to 49.6). For the separate calibrations, the eigenvalues for the first contrast were acceptable (ranging from 1.7 to 2.3) suggesting no additional dimensions in the data.

When data for all 30 items were calibrated, little misfit was detected. One item (symptom: weakness in arm, shoulder or hand) had an infit mean square of 1.45, slightly exceeding the desired criterion. When the function items were calibrated separately, another item (sexual activities) misfit (infit MnSq=1.53) but no misfit was found in the separate calibrations for the pain and impact items. However, the separate pain and impact scales showed little ability to differentiate between high and low scorers. The person separation index was 1.25 (reliability=0.61) for the pain items and was 0.79 (reliability=0.38) for the impact items. In an attempt to improve upon these results, the pain and impact items were combined and calibrated together so that the scale consisted of two dimensions, which were ‘function’ and ‘pain/impact’. In this calibration, the measures explained 48.3% of the variance, the eigenvalue for the first contrast was 2.6 with pain items loading positively and impact items loading negatively. There were no misfitting items and the person separation was better (1.50/.69) although only barely acceptable. In summary, analyses showed that there are at least two dimensions in the items (function and pain/impact); there is little evidence of misfit
when all items are calibrated together but some occur when the construct is more narrowly defined; and the ability of the function items to distinguish multiple levels of these traits in this population is good (at least 3 levels discernible) but the pain and impact items cannot distinguish two levels.

Insert figure 2 about here

Concurrent Validity: Correlation (Spearman’s rho) between the total scores was $r_s=0.41$ ($p=0.023$). Figure 3 demonstrates a plot for the total score for the DASH and PRWE questionnaire. Although data plots are widely scattered, overall a higher score on the DASH was reflected by a higher score on the PRWE. Subscale concurrent validity was also moderate. The highest correlation was between the pain severity scales with a retest of $r_s=0.53$ ($p=0.003$). The functional subscales had a result of $r_s=0.51$ ($p=0.003$).

Insert figure 3 about here

Test retest reliability: The mean change score in this participant group was -0.3 points on the DASH (sd 22.5, median change 0 points), with the mean score for baseline 58.9 (sd 21.1) and the mean score 4 weeks after 58.6 (sd 18.2). Results indicated that the DASH had low test retest reliability (ICC=0.56 [95% CI 0.05-0.79]) when tested on a second occasion four weeks later [45]. A review of the item total correlations was completed; results ranged from 0.18 to 0.77, suggesting that not all DASH items discriminated between high and low performing participants [45]. The two items that fell below the 0.3 mark were question 27 “tingling (pins and needles) in your arm, shoulder or hand” ($r=0.18$) and question 30 “I feel less capable, less confident or less useful because of my arm, shoulder or hand problem” ($r=0.29$).
Ease of use: The DASH and PRWE demonstrated similar results, with both assessment tools considered to take an appropriate amount of time to administer in a clinical setting and required relatively few verbal prompts from the clinician for application. Results can be found in table 2.

Insert table 2 about here

Discussion

This study evaluated the psychometric properties of the DASH when used with adults after stroke and is the first study to our knowledge to conduct this type of evaluation. Previous studies have reported the DASH is a psychometrically sound tool for use with musculoskeletal conditions [19]. The present study provided unique information on the validity, reliability and ease of use of the DASH when used in a post stroke population.

The DASH aligns well with a focus on upper limb function and associated impact on activity. We found it to be quick and simple to administer with adults after stroke. Our analyses showed there was good internal consistency for the measured sample [39]. Previous studies conducted on the internal consistency of the DASH also delivered good to excellent Cronbach alpha scores (0.92-0.98) for a range of musculoskeletal conditions [11,15], and our findings in a population of adults after stroke concur with this. However, the questionnaire appears to have subscales. It was evident from Rasch modeling and factor analysis that the dimensionality across items differed; that is, the DASH is most likely behaving as three separate scales (functional use, pain, and impact). Clinicians should interpret the findings of the DASH not by total score alone but by examining each response and considering these in relation to the three identified themes.
The concurrent validity of the DASH with the PRWE was moderate, indicating that the tools potentially measure different constructs. The PRWE was chosen for this study as it includes features of functional hand and wrist use and symptoms [45] and is commonly used by clinicians in hand therapy positions. However, both tools were designed for use with musculoskeletal populations and so the results of this analysis should be interpreted with caution. The moderate correlation suggests that both tools are measuring upper limb function and activity performance in a meaningful but potentially different way in stroke survivors. Given that these two tools have been found to correlate highly in a musculoskeletal (non-stroke) population [18], our findings may suggest that the DASH and PRWE are measuring different phenomena in the stroke population. It is possible that adults post stroke could respond differently to the DASH and PRWE questions compared to people with a musculoskeletal condition. That said, the moderate validity result does support the operationally defined theories of the tools, i.e. that the DASH measures function and symptoms in the upper limb as a whole [8], and the PRWE measures function and pain in the wrist only [35]. Participants in the included studies, however, may have displayed musculoskeletal symptoms in their non-hemiplegic upper limb (as this was not documented in any trial); given the inclusion of bilateral tasks in both the DASH and PRWE, this may have also affected the response patterns of included data. It would thus be of further interest to analyze the correlation between the DASH and PRWE in a sample of stroke survivors who have wrist and hand function ability with greater upper arm function, given that the present sample included primarily people with dense hemiplegia.

This study also investigated test-retest reliability of the DASH; within this sample of people with dense hemiplegia the DASH did not psychometrically perform well [45]. These findings differ from previous results in participants with musculoskeletal conduction, which
identified the DASH as having excellent test retest reliability (Intraclass Correlation Coefficient=0.93-0.96) [11,12]. This difference may be related to the nature of stroke, which is sudden in onset and our population who were on average six weeks post stroke. Self-report tools, such as the DASH, may be susceptible to the effects of bias due to ‘response shift’, which occurs when people’s views, values or expectations change over time and do not correlate with objectively measured change [50]. In our study, it is plausible that participants may have gained more insight into their deficits over time; for example at the time of first assessment patients’ might have had a limited understanding as to how their upper limb physical dysfunction would impact on tasks asked in the DASH because they had limited opportunity to practice those tasks; this would have led to lower test-retest reliability coefficients. A further limitation from our secondary analysis is that there was a long period of time between the two assessments (four weeks), which may have also affected test-retest reliability results.

Although this is one of the first published studies investigating the use of DASH with stroke survivors, we caution the generalisability of our findings at this time. Our sample was over-representative of stroke survivors’ with dense hemiplegia, that is, unable to move their hemiplegic upper limb. Our findings suggest that scale dimensionality is not consistent across the DASH, and that for stroke survivors’ category collapsing is needed to reflect the response patterns within this population. We therefore recommend further testing of the DASH on a larger sample size, a broader sample with different degrees of upper limb impairment and that future studies should investigate category response. Research examining correlations between the DASH and other variables including motor function, sensation and pain would also provide useful information about associations between impairment and self-reported activity limitation.
Conclusion

More information is needed about the psychometric properties of the DASH with stroke survivors before it can be recommended in this population. Further research is required to establish scale response and test-retest reliability as poor outcomes in this study may have been the result of moderating factors, including low levels of upper limb movement and emerging acceptance of upper limb disability in the test re-test period. The importance of understanding functional disability from the perspective of the patient, as well as the ease in which clinicians found the DASH to administer, makes further investigation warranted.

Acknowledgments: The authors wish to acknowledge staff involved in collecting data for the three studies and the participants involved in the studies.

Declaration of Interest Statement: The authors report no declarations of interest, and no funding was received for this study.
References

Figure 1. Flow chart of included sample

Figure 2. Item fit map comparing the hierarchy of the original 30 items

Figure 3. Scatter Plot of total DASH and Patient Rated Wrist Evaluation scores