Archived at the Flinders Academic Commons:
http://dspace.flinders.edu.au/dspace/

‘This is the peer reviewed version of the following article:

which has been published in final form at
http://dx.doi.org/10.1186/1477-7525-10-80

This article is made available with the permission of the publisher, Association for Research in Vision and Ophthalmology

Copyright © Association for Research in Vision and Ophthalmology
The Importance of Rating Scale Design in the Measurement of Patient-Reported Outcomes Using Questionnaires or Item Banks

Jyoti Khadka, Colm McAlinden, Vijaya K. Gothwal, Ecosse L. Lamoureux, and Konrad Pesudovs

PURPOSE: To investigate the effect of rating scale designs (question formats and response categories) on item difficulty calibrations and assess the impact that rating scale differences have on overall vision-related activity limitation (VRAL) scores.

METHODS: Sixteen existing patient-reported outcome instruments (PROs) suitable for cataract assessment, with different rating scales, were self-administered by patients on a cataract surgery waiting list. A total of 226 VRAL items from these PROs in their native rating scales were included in an item bank and calibrated using Rasch analysis. Fifteen item/content areas (e.g., reading newspapers) appearing in at least three different PROs were identified. Within each content area, item calibrations were compared and their range calculated. Similarly, five PROs having at least that content in common with the Visual Function (VF-14) were compared in terms of average item measures.

RESULTS: A total of 614 patients (mean age ± SD, 74.1 ± 9.4 years) participated. Items with the same content varied in their calibration by as much as two logits; "reading the small print" had the largest range (1.99 logits) followed by "watching TV" (1.60). Compared with the VF-14 (0.00 logits), the rating scale of the Visual Disability Assessment (1.13 logits) produced the most difficult items and the Cataract Symptom Scale (0.24 logits) produced the least difficult items. The VRAL item bank was suboptimally targeted to the ability level of the participants (2.00 logits).

CONCLUSIONS: Rating scale designs have a significant effect on item calibrations. Therefore, constructing item banks from existing items in their native formats carries risks to face validity and transmission of problems inherent in existing instruments, such as poor targeting. (Invest Ophthalmol Vis Sci. 2012;53:4042–4054) DOI:10.1167/iovs.12-9728
actual effect of rating scales on item calibrations. Further, we investigated the impact of rating scales on the overall difference in VRAL scores measured by different PROs.

METHODS

Participants and PROs

Participants were patients on the waiting list for cataract surgery at Flinders Medical Centre, Adelaide, South Australia. All participants were 18 years or older, English speaking, and cognitively able to self-administer PROs. A pack containing 10 PROs randomly selected from the 16 PROs (Table 1) were mailed to the participants for self-administration. The 16 PROs were the Visual Disability Assessment (VDA), the National Eye Institute Visual Function Questionnaire (NEIVFQ), the Cataract Symptom Scale (CatScale), the Impact of Visual Impairment (IVI), the Visual Activities Questionnaire (VAQ), the Visual Symptoms and Quality of Life Questionnaire (VSQ), the Technology of Patient Experience (TyPE), the Activities of Daily Vision Scale (ADVS), the Quality of Life-Visual Function Questionnaire (QOLVFQ), the Houston Vision Assessment Test (HVAT), the CatQuest (CATQ), the Visual Function and Quality of Life (VFQOL), the Impact of Cataract Surgery (ICS), The Visual Functioning Index (VFI), the Visual Function-14 (VF-14), and the Distance Visual Impairment Questionnaire (DVI). These PROs were chosen because they were either developed to, or have been used to assess the impact of cataract and/or outcomes of cataract surgery.

The VRAL item bank was developed using items from 16 different PROs (Table 1). It is likely to add extra respondent burden and could compromise the quality of data, if the participants had to complete all the 16 PROs. Therefore, each participant was sent a pack of 10 PRO instruments. However, it is required to calibrate all the items from the 16 PROs on a common metric scale to feed into the item bank. This requires a common set of linking items to link with all the other items which we refer as “anchoring.” The common set of items we used in this study was the items of the VDA. Therefore, each pack contained the VDA and 9 PROs randomly selected from other 15 PROs. To ensure data that could be linked, all the participants completed the VDA first followed by as many of the other instruments as they could complete. All the participants completed at least the VDA and it was the instrument that was completed before the other PRO instruments.

<table>
<thead>
<tr>
<th>PROs</th>
<th>Number of Items</th>
<th>Response Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Disability Assessment, VDA</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Visual Function-14, VF-14</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Visual Functioning index, VFI</td>
<td>8</td>
<td>2 and 3*</td>
</tr>
<tr>
<td>Technology of Patient Experiences, TyPE</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Distance Visual Impairment Questionnaire, DVI</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Activities of Daily Vision Scale, ADVS</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Cataract Symptom Scale, CatScale</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Visual Activities Questionnaire, VAQ</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Quality of Life and Visual Function Questionnaire, QOLVFQ</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Visual Function and Quality of Life, VFQOL</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Impact of Vision Impairment, IVI</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Catquest, CATQ</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Visual Symptoms and Quality of Life Questionnaire, VSQ</td>
<td>14</td>
<td>2, 3, 4, 5, 6, 7, and 8</td>
</tr>
<tr>
<td>National Eye Institute Visual Function Questionnaire, NEIVFQ</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Houston Vision Assessment Test, HVAT</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Impact of Cataract Surgery, ICS</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total items</td>
<td>226</td>
<td></td>
</tr>
</tbody>
</table>

The following PROs had a different number of response categories across their items:

* VFI: items 5, 4, 6, 7, and 8 = 2-category option; items 1 and 2 = 3-category option.
* VSQ: items 17, 21, and 23 = 2-category option; item 16 = 3-category option; items 2 and 15 = 4-category option; items 1, 3, 5, 6, 7, 8, and 18 = 5-category-option; item V1 = 7-category option.

The study adhered to the ethical standards laid by the tenants of the 2008 Declaration of Helsinki and was approved by the Flinders Clinical Ethics Committee. All participants provided written informed consent before their inclusion in the study.

Vision-Related Activity Limitation Item Bank

A total of 226 items from the 16 legacy PROs measuring VRAL in their native rating scale format were included in the item bank. Data collected for these items were pooled together for Rasch analysis to calibrate the 226 items.

Rasch Analysis

Rasch analysis is a probabilistic mathematical model that estimates a person’s ability and item difficulty on a common measurement continuum defined by an interval scale, expressed in log-odds units (logits). A logit is a unit of measurement to report relative differences between a person’s ability and item difficulty in an equal interval scale. At a detailed level, Rasch analysis estimates threshold values for response categories in logits. The threshold is the point at which the ability required to endorse either of the adjacent categories is equal; that is, the transition point from one category to the next. The number of thresholds is always one less than the number of categories; for example, for five-response categories the number of thresholds is four. Each threshold has its own difficulty estimate. Difficulty estimates of the thresholds are expected to increase monotonically, that is, the response categories should represent increasing levels of underlying trait being measured from lower to higher category. For a threshold “k” with the difficulty value “Bk,” the probability of choosing category “k” is calculated by the Rasch model by the following equation:

\[
P_{ik} = \frac{e^{(B_i - B_k + F_k)}}{1 + e^{(B_i - B_k + F_k)}},
\]

where, \(P_{ik} = \) probability of person “i” choosing category “k” over the adjacent category on any item “i,” \(B_i = \) person ability, \(F_k = \) difficulty of threshold k, \(D_i = \) item difficulty; and \(O_i + F_k = \) is the item difficulty added to the threshold difficulty indicating the effect of threshold difficulty on item i. The difficulty estimates of the threshold k are estimated across the entire set of items once in the Andrich Rating scale model. The same logic is followed to calculate difficulty estimates for other thresholds. If the assumption is met that all items have equal difficulty estimates, the items are considered to have the same level of difficulty.

TABLE 1. Sixteen PRO Instruments, Number of Items, and Response Categories Used to Develop a Vision-Related Activity Limitation Item Bank

<table>
<thead>
<tr>
<th>PROs</th>
<th>Number of Items</th>
<th>Response Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Disability Assessment, VDA</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Visual Function-14, VF-14</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Visual Functioning index, VFI</td>
<td>8</td>
<td>2 and 3*</td>
</tr>
<tr>
<td>Technology of Patient Experiences, TyPE</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Distance Visual Impairment Questionnaire, DVI</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Activities of Daily Vision Scale, ADVS</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Cataract Symptom Scale, CatScale</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Visual Activities Questionnaire, VAQ</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Quality of Life and Visual Function Questionnaire, QOLVFQ</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Visual Function and Quality of Life, VFQOL</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Impact of Vision Impairment, IVI</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Catquest, CATQ</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Visual Symptoms and Quality of Life Questionnaire, VSQ</td>
<td>14</td>
<td>2, 3, 4, 5, 6, 7, and 8</td>
</tr>
<tr>
<td>National Eye Institute Visual Function Questionnaire, NEIVFQ</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Houston Vision Assessment Test, HVAT</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Impact of Cataract Surgery, ICS</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total items</td>
<td>226</td>
<td></td>
</tr>
</tbody>
</table>
discrimination and vary only in terms of difficulty, then the discriminating power of each item is a combination of its difficulty and a set of thresholds. In other words, each category may have a different discriminating power within an item. Therefore, items with similar content but with different response categories in terms of number or labels may have different threshold estimates.

Furthermore, Rasch analysis is a unidimensional model, which means that it demands that all the items within a PRO instrument are expected to measure a single underlying trait; for example, vision-related activity limitation, symptoms, and so forth. However, for a multidimensional instrument, Rasch analysis can offer a strong assessment of dimensionality and also provides a platform to subdivide the instrument into unidimensional subscales. For those who are interested in further information on Rasch analysis and rating scales, we recommend readers to refer to the articles by Massof, Mallinson, and Linacre, and the book by Bond and Fox.

Rasch analysis is widely used to develop new PROs, reengineer existing PROs, and, more recently, to calibrate items for item banks. Rasch analysis generates a person-item map that provides visual observation of the relative position of item-difficulty to person-ability. By default, the item mean is placed at 0 logits. For a perfectly targeted instrument, both item and person means lie at the same point on the map (i.e., mean difference = 0 logits); however, a difference of person and item means of up to 1 logit is acceptable. A difference between means of more than 1 logit indicates notable mistargeting. Poor targeting occurs because of items clustering at a certain point along the map, large gaps between items, and the higher or lower ability of the study population than the required level of ability to endorse the items.

For example, Figure 1 shows the person-item map for the 18-item VDA questionnaire from our previous work. The relative position of the items and participants was arranged according to the item difficulty

![Person-item map of the 18-item VDA](image_url)

Figure 1. Person-item map of the 18-item VDA. Items are located on the right and participants (represented by “#” and “.”) are located on the left of the dashed line. Difficult items and more able participants are located at the bottom of the map. M = mean; S = 1 SD from the mean; T = 2 SDs from the mean. The M, S, and T are shown for both the participants and the items on either side of the dashed line. The difference in person and item means is 1.4 logits.
estimates (i.e., item calibration) and the person’s ability. For this map, more difficult items and more able participants are located at the bottom of the map. As can be observed on the map, items with a similar level of difficulty are expected to lie on the same line on the map and have similar item calibration (e.g., item 16, “move in unfamiliar surroundings” and item 8, “driving a car by the day” were of the same difficulty). The 18-item VDA was slightly mistargeted to the study population (difference between person and item means = 1.4).

Within the VRAL item bank, items with the same content are also expected to demonstrate the same or nearly equal calibrations and, therefore, the same locations on the person-item map. Whether items with the same content calibrate at similar or different levels of item difficulty can, therefore, be demonstrated on person/item maps.

Analysis

To further investigate the impact of rating scales on item calibration, we specifically searched among the 226 items and grouped items with the same content areas. Items would qualify for further analysis only if the content appeared in at least three items across three different PROs. We identified 57 items across 15 different content areas from 13 PROs (Appendix 1). Item difficulty calibrations on a common metric scale were assessed.

Rasch analysis was performed according to the Andrich Rating scale model using joint likelihood estimation with Winsteps (version 3.67.0, Chicago, IL) software. Combined Rasch analysis was carried out on the 226 items measuring VRAL (as a single large questionnaire). The number of response categories ranged between two and seven across 226 items (Table 1). To calibrate items on a single common metric scale, the polarity of the response categories was modified such that all the items were scaled in the same direction. This was done by arranging the first response as the most positive and the last response as the most negative for all the items. For this analysis, a positive item indicates that the item requires a lower level of ability than the average, or the item is less difficult and vice versa. Item calibration (difficulty estimates in logits) and locations of the items were assessed. The range of the item calibrations within each content area was also calculated.

Similarly, we also searched among the 13 PROs for those that had at least three common item/content pairs. We identified five PROs (CatScale, TyPE, ADVS, NEIVFQ, and VDA) having at least three item/content pairs in common with the VF-14 (Appendix 2).

For the five PROs with at least three common item/content pairs, the difference between the item calibration with each PRO and with the VF-14 was calculated. Using the common items, a simple average estimate of item difficulty (VRAL score) for each PRO was calculated. The difference in VRAL scores (i.e., relative item difficulty in reference to the VF-14) between each PRO and the VF-14 was calculated. Using the common items, a simple average estimate of item difficulty (VRAL score) for each PRO was calculated. The difference in VRAL scores (i.e., relative item difficulty in reference to the VF-14) between each PRO and the VF-14 was calculated and the values were compared.

Results

A total of 614 patients participated. The mean age of the participants was 74.1 years (SD = 9.4) and 56% were female. Among the 614 patients, 59% had bilateral cataracts, 41% were awaiting second eye surgery, and 51% had ocular comorbidities (glaucoma, 16%; age-related macular degeneration, 9%; and diabetic retinopathy, 4%). The participants had been diagnosed with cataract for an average of 3.2 ± 8.7 years. The mean visual acuity was 0.22 ± 0.20 logarithm of the minimum angle of resolution (LogMAR) (~6/9.5) in the better eyes and 0.55 ± 0.36 LogMAR (~6/24) in the worse eyes. The systemic comorbidities of the study population were representative of an elderly cataract population in Australia. 15

Figure 2 shows the person-item map of the VRAL item bank. Items at the top of the map (DV11 and DV12) were least difficult items, whereas items near the bottom the map (VAQ15, DIV15) were the most difficult items. The highlighted items were those with the content “reading small print” but with varying question formats and response categories; these were widely spread out on the map. The VRAL item bank also demonstrated substantial test-retest reliability on the study population (difference between person and item means was 2 logits).

Table 2 shows the item measure estimates of the 57 items across 15 content areas derived from the 13 PRO instruments (Appendix 1); on average, item calibrations ranged over 1.07 logits for each content area. The widest spread of item calibration was observed for the items with the content “reading small print” (1.99 logits), followed by “watching TV” (1.6 logits). The narrowest range was observed for items with the content “reading newspapers and books” (0.17). For 9 (60%) of 15 content areas, the range was more than 1 logit. Among the remaining six content areas, only half had a range less than 0.5 logit. When compared, most of the items of the VDA had greater difficulty (more negative item difficulty estimates) than the items of other PROs.

Content contamination (items with mixed content versus a single content) was identified as having an additional confounding effect on item calibration. For example, in Figure 2, the multibarreled hobby item NEIVFQ6 (“Doing work or hobbies that require you to see well up close, such as cooking, sewing, fixing things around the house, or using hand tools,” –0.80 logits) was noticeably more difficult than the single-barreled hobby item IVI2 (“Favorite pastime hobbies,” –0.33 logits).

We also investigated the impact of rating scales on an overall difference in VRAL score, measured by six different PROs. The rating scales of the CatScale, TyPE, ADVS, NEIVFQ, and VDA produced more difficult items than the rating scale of the VF-14 (Fig. 3). Among these six PROs, the rating scale of the VDA (question format: “to what extent, if at all, does your vision interfere with your ability to...?” and response categories: “not at all, a little, quite a bit, and a lot”) produced the most difficult items (average item measure was 1.13 logits more difficult than the VF-14). In terms of difficulty, the VDA was followed by the rating scales of the NEIVFQ (0.66 logits), ADVS (0.55 logits), TyPE (0.43), and CatScale (0.24) (Fig. 3).

Discussion

This study has provided empirical evidence that differences in rating scale formats have a significant effect on item calibrations beyond item content. A large number of PROs and rating scales were used that enabled a head-to-head comparison at item-level. We found that the effect of rating scales on item calibrations could be marked, as demonstrated by the spread of item difficulty estimates between the items with the same content. This implies that using a common rating scale across all items measuring an underlying trait provides an advantage of allowing item calibration based on item content only. An item bank, or questionnaire, where all items use the same rating scale design, and items vary in difficulty only according to their content, is an elegant design that provides a level of face validity for the potential user. An item bank comprising legacy items in their native rating scale format can still be used to measure the underlying latent trait. The measurement properties of the bank may not be degraded per se, but it may be more difficult to see where items are required to further optimize measurement.

The influence of rating scales on item calibration was also briefly reported by Massof. 13,14 He observed this effect when he merged data from four different PROs (ADVS, NEIVFQ, VF-
He argued that the effect was probably due to the subtle differences in rating scales between the PROs. Our findings also support his argument. As defined in the methods section, the difference in item difficulty estimates can be attributed to the difference in rating scale designs between the items with the same content. We observed that question formats (i.e., how an item was asked) probably has more effect on item calibrations than wording and number of response categories. For example, the items that had similar question formats (CatScale item 9: "Do you have difficulty reading books or newspaper?" VSQ item 1: "Do you have difficulty reading normal print in books or newspapers because of trouble with your eyesight?" and VF-14 item 2: "Do you have difficulty, even with glasses, reading a newspaper or a book?") shared similar item calibrations (Table 2). The differences in item calibrations were found to be higher when items with the same content were stated differently. For example, the VDA item 4 ("To what extent does your vision interfere with your ability to watch television?") had much higher item calibration (−0.85 logits) than the CatScale item 2 (0.25 logits) ("Do you have difficulty watching television?"), despite having only subtle differences in response categories. However, the item calibration of the VDA item 4 (−0.85 logits) was closer to the HVAT item 9a/b (0.34 logits) ("To what extent is your watching television impaired?") probably due to the similar question format, despite having completely different response categories in terms of number and wording (Table 2 and Appendix 1). This observation was consistent among most of the items across the 15 content areas. In our study, we found a much higher effect of rating scales on item calibration than in Massof’s study. It was possibly because we compared the ratings scales of 13 PROs compared with 4 PROs in the study.
Table 2. Comparison of Item Measures and Their Range Values (in logits) of the Items Distributed across 15 Different Contents, Identified from the 13 PRO Instruments

<table>
<thead>
<tr>
<th>PROs</th>
<th>Street Signs/Names</th>
<th>Pouring Liquids</th>
<th>Peripher Vision</th>
<th>Color Vision</th>
<th>Crossing the Road</th>
<th>Public Transport</th>
<th>NEIVFQ/C0</th>
<th>CatScale/C0</th>
<th>IVI/C0</th>
<th>VAQ/C0</th>
<th>VF-14/C0</th>
<th>VFQOL/C0</th>
<th>Range (Logit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDA</td>
<td>-0.34</td>
<td>1.19</td>
<td>0.15</td>
<td>0.02</td>
<td>-0.03</td>
<td>-0.34</td>
<td>0.15</td>
<td>0.15</td>
<td>0.05</td>
<td>-0.25</td>
<td>-0.03</td>
<td>0.15</td>
<td>-0.34</td>
</tr>
<tr>
<td>NEIVFQ</td>
<td>-0.8</td>
<td>-1.38</td>
<td>-0.01</td>
<td>-0.04</td>
<td>-0.02</td>
<td>-0.26</td>
<td>0.05</td>
<td>-0.02</td>
<td>0.53</td>
<td>-0.45</td>
<td>-0.02</td>
<td>-0.45</td>
<td>0.05</td>
</tr>
<tr>
<td>CVI</td>
<td>-1.33</td>
<td>-0.34</td>
<td>0.04</td>
<td>-0.01</td>
<td>0.12</td>
<td>-0.34</td>
<td>-0.01</td>
<td>0.12</td>
<td>0.01</td>
<td>-0.34</td>
<td>-0.01</td>
<td>-0.34</td>
<td>0.01</td>
</tr>
<tr>
<td>QOLVQ</td>
<td>-0.28</td>
<td>0.34</td>
<td>0.04</td>
<td>0.27</td>
<td>0.41</td>
<td>-0.26</td>
<td>0.04</td>
<td>0.27</td>
<td>0.41</td>
<td>-0.26</td>
<td>-0.26</td>
<td>-0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>CATQ</td>
<td>0.17</td>
<td>1.59</td>
<td>1.13</td>
<td>1.59</td>
</tr>
</tbody>
</table>
| Higher range indicates a wider spread of item calibration.

Higher range indicates a wider spread of item calibration.

by Massof.16 Our study had also included the four PROs used in Massof’s study.16 As expected, we found in our study that items from these four PROs had the same hierarchy of item calibrations as reported by Massof.15,16 Our VRAL item bank also demonstrated suboptimal targeting to the study population, despite having a large volume of items. Interestingly, all of these PROs, except the VDA, demonstrated suboptimal targeting to the study population in previous studies.43,44,46–50 This implies that our VRAL item bank had inherited the targeting problems associated with these PROs. This was probably because the content of these PROs was developed when cataract surgery was performed at a later stage of cataract maturation and disability than occurs today.51 Therefore, these item contents were outdated and were not able to capture the important issues that matter to people with cataracts at the present time. This was reflected by poor targeting demonstrated by our VRAL item bank. This highlights a key disadvantage of using legacy items alone to form an item bank. To improve the targeting, more difficult items that match the population should be added to the item bank. A better overall strategy for developing an item bank would be to extract content from the existing items, supplement with content derived from patient focus groups, and then rewrite all items with a common rating scale. This argument is also supported by previous studies that have reported that rewritten items provided better information, targeting, and increased measurement precision when compared with the existing items.1,52

Besides the rating scales, we also observed that items with single and mixed contents demonstrated different item calibration. For example, items with the content “reading newspapers” were found to be more difficult than “reading newspapers and books.” This was probably because books have a larger print size than newspapers. Therefore, when “reading newspapers” was combined with books, the task was perceived easier than just “reading newspapers.” Even though the differences in item measures were not very high, they were still consistent across all the items (Table 2). This effect was more pronounced when item calibration was compared between single- and multibarreled items.

When compared with the VF-14, we found that the rating scales of the five other PROs produced more difficult item calibrations for the same items (Fig. 3). The VF-14 provided the easiest ratings. This was probably because the VF-14 had two-part questions for each item (Part 1: “Do you have difficulty, even with glasses…?” Yes; No; Not applicable), where respondents could answer that they had no difficulty before they knew other options were available (Part 2: “if yes, how much difficulty do you currently have”? A little = 1; A moderate amount = 2; A great deal = 3; Unable to do the activity = 4). Therefore someone with “a little difficulty” may choose “no difficulty” rather than “yes difficulty” because it is only a small problem. In this way, the VF-14 may underestimate VRAL; whereas, in other PROs, rating scales were laid out in such a way that directly allowed respondents to choose options appropriate to them. Among all the PROs, the VDA gave the most difficult items, probably because the VDA items really push respondents to admit any disability at all (e.g., “To what extent, if at all, does your vision interfere with your ability to…?” Not at all = 1; A little = 2; Quite a bit = 3; A lot = 4). This was probably the reason why the VDA was a better-targeted PRO to a cataract population than other PROs.14 For this analysis, the VF-14 was selected as the reference PRO because it shared a maximum number of common items with other PROs. Although this approach neatly estimates the relative difficulty of the rating scale used in each PRO, this approach is limited in that it does not use the same items for all PROs and is restricted to a small number of items. Therefore, the logit
differences calculated herein are a guide only and do not represent conversion factors that could be used to equate different PROs. We acknowledge that this study used items that measure vision-related disability only; consequently, the generalizability of the results to other latent traits (symptoms/emotional well-being) and other disciplines in health care may not be appropriate. However, the concept of rating scales and measuring patient reports crosses the boundary of underlying traits being measured and the study population used. Therefore, we expect that the results of this study would likely apply to other latent traits and disciplines in health care. The other potential limitation of the study was that the participants self-administered multiple PROs. The VDA was used as the anchoring PRO instrument; therefore, it was always completed first. This might have introduced a fatigue effect in their responses, particularly to the PROs that were administered after a few had been completed. However, the ordering of other PROs was randomly varied to control for the fatigue effect.

In conclusion, we have demonstrated that differences in rating scale design could have a significant effect on item calibrations beyond item content. Question format and response category labels appeared to influence item calibrations and, ultimately, overall measurement by PROs. Therefore, it would be difficult to directly compare research findings using different PROs. Moreover, it would be inelegant to use items from different PROs in their native rating scale formats to develop an item bank in which it is desirable that item calibration reflects item content only. A preferred strategy would be to extract content from the existing items, refine the wording, add new content from other sources (e.g., patient focus groups) and fit all the items to a simple, uniform, and common rating scale.

Acknowledgments

The authors acknowledge Thomas A. Wright for his contributions in recruiting patients, posting the questionnaires, and collating data for analysis.

References

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CatScale_1</td>
<td>Do you have difficulty reading small print? (No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)</td>
</tr>
<tr>
<td>2</td>
<td>VAQ_7</td>
<td>I have problems reading small print (for example, phone book, newspapers). (Never; Rarely; Sometimes; Often; Always)</td>
</tr>
<tr>
<td>3</td>
<td>NEIVFQ_A3</td>
<td>Wearing glasses, how much difficulty do you have reading the small print in a telephone book, on a medicine bottle, or on legal forms? Would you say: (No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty; Stopped doing this because of your eyesight)</td>
</tr>
<tr>
<td>4</td>
<td>IVI_13</td>
<td>In the past month, how much has your eyesight interfered with reading labels or instructions on medicines? (Not at all; Hardly at all; A little; A fair amount; A lot; Can't do because of eyesight)</td>
</tr>
<tr>
<td>5</td>
<td>VF-14_1</td>
<td>Do you have difficulty, even with glasses, reading small print, such as labels on medicine bottles, a telephone book, and food labels? (Yes/No/Not applicable) If yes, how much difficulty do you currently have? (A little; A moderate amount; A great deal)</td>
</tr>
</tbody>
</table>

Content 2. Reading newspapers

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEIVFQ_5</td>
<td>How much difficulty do you have reading ordinary print in newspapers? Would you say you have: (No difficulty at all; A little difficulty; Moderate difficult; Extreme difficulty; Stopped doing this because of your eyesight)</td>
</tr>
<tr>
<td>2</td>
<td>IVI_7</td>
<td>In the past month, how much has your eyesight interfered with reading ordinary size print (for example newspapers)? (Not at all; Hardly at all; A little; A fair amount; A lot; Can't do because of eyesight)</td>
</tr>
<tr>
<td>3</td>
<td>ADVS_11bc</td>
<td>Would you say that you read the ordinary print in newspapers with: (PLEASE CHECK ONLY 1 ANSWER) (No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty) Is it because of visual problems that you cannot read the ordinary print in newspapers? (Yes; No; Not applicable)</td>
</tr>
</tbody>
</table>

Content 3. Reading books or newspapers

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CatScale_9</td>
<td>Do you have difficulty reading books or newspapers? (No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)</td>
</tr>
<tr>
<td>2</td>
<td>VSQ_1</td>
<td>Do you have difficulty reading normal print in books or newspapers because of trouble with your eyesight? (No difficulty; Yes, a little difficulty; Yes, some difficulty; Yes, a great deal of difficulty: I cannot read because of my eyesight)</td>
</tr>
<tr>
<td>3</td>
<td>VF-14_2</td>
<td>Do you have difficulty, even with glasses, reading a newspaper or a book? (Yes; No; Not applicable) If yes, how much difficulty do you currently have? (A little; A moderate amount; A great deal, Are you unable to do the activity)</td>
</tr>
</tbody>
</table>

Content 4. Watching television

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDA_4</td>
<td>To what extent, if at all, does your vision interfere with your ability to watch television? (Not at all; A little; Quite a bit; A lot)</td>
</tr>
<tr>
<td>2</td>
<td>CatScale_2</td>
<td>Do you have difficulty watching television? (No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)</td>
</tr>
</tbody>
</table>
Content 5. Driving by day

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item/Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDA_8</td>
<td>To what extent, if at all, does your vision interfere with your ability to drive a car by day?</td>
</tr>
<tr>
<td>2</td>
<td>ADVS_2b</td>
<td>Would you say that you drive during the day with: (PLEASE CHECK ONLY 1 ANSWER)</td>
</tr>
<tr>
<td>3</td>
<td>HVAT_3a/b</td>
<td>To what extent is your driving during the day impaired?</td>
</tr>
<tr>
<td>4</td>
<td>VF-14_13</td>
<td>How much difficulty do you have driving during the day because of your vision? Do you have:</td>
</tr>
<tr>
<td>5</td>
<td>TyPE_8</td>
<td>How much does your vision hinder, limit, or disable you in each of the following activities? Daytime driving</td>
</tr>
</tbody>
</table>

Content 6. Driving by night

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item/Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDA_9</td>
<td>To what extent, if at all, does your vision interfere with your ability to drive a car by night?</td>
</tr>
<tr>
<td>2</td>
<td>NEIVFQ_16</td>
<td>How much difficulty do you have driving at night? Would you say you have:</td>
</tr>
<tr>
<td>3</td>
<td>ADVS_1b</td>
<td>Would you say you drive at night with:</td>
</tr>
<tr>
<td>4</td>
<td>VF-14_14</td>
<td>How much difficulty do you have driving at night because of your vision? Do you have: (No difficulty = 0; A little difficulty = 1; A moderate amount of difficulty = 2; A great deal of difficulty = 3; Unable to do = 4)</td>
</tr>
<tr>
<td>5</td>
<td>TyPE_9</td>
<td>How much does your vision hinder, limit, or disable you in each of the following activities? Nighttime driving</td>
</tr>
</tbody>
</table>

Content 7. Face recognition at distance

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item/Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDA_3</td>
<td>To what extent, if at all, does your vision interfere with your ability to recognize faces across the street?</td>
</tr>
<tr>
<td>2</td>
<td>VFQOL_3</td>
<td>How much problem do you have recognizing people across the street?</td>
</tr>
<tr>
<td>3</td>
<td>CatScale_3</td>
<td>Do you have difficulty recognizing someone across the street?</td>
</tr>
<tr>
<td>4</td>
<td>QOLYFQ_10</td>
<td>Because of your vision, do you have problems in recognizing people across the street?</td>
</tr>
<tr>
<td>5</td>
<td>TyPE_3</td>
<td>How much does your vision hinder, limit, or disable you in each of the following activities? Recognizing people or objects across the street.</td>
</tr>
</tbody>
</table>
Appendix 1. Continued

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item</th>
<th>Item/Response Option</th>
</tr>
</thead>
</table>
| 1 | VFQOL_4 | How much problem do you have recognizing the **face of a person standing near you**?
(Not at all; A little; Quite a lot; A lot) |
| 2 | VF-14_4 | Do you have difficulty, even with glasses, recognizing **people when they are close to you**?
(Yes; No; Not applicable)
If yes, how much difficulty do you currently have?
(A little; A moderate amount; A great deal; Are unable to do the activity) |
| 3 | Catquest_8 | **Recognize the faces** of people you meet.
(Yes, extreme difficulty; Yes, much difficulty; Yes, some difficulty; No, no difficulty; Cannot say) |

Content 8. Face recognition at near

1. **VFQOL_4**: How much problem do you have recognizing the **face of a person standing near you**?
(Not at all; A little; Quite a lot; A lot)
2. **VF-14_4**: Do you have difficulty, even with glasses, recognizing people when they are close to you?
(Yes; No; Not applicable)
If yes, how much difficulty do you currently have?
(A little; A moderate amount; A great deal; Are unable to do the activity)
3. **Catquest_8**: Recognize the faces of people you meet.
(Yes, extreme difficulty; Yes, much difficulty; Yes, some difficulty; No, no difficulty; Cannot say)

Content 9. Reading street signs/name of the stores

1. **NEIVFQ_8**: How much difficulty do you have reading street signs or the name of stores?
(No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty; Stopped doing this because of your eyesight)
2. **VF-14_6**: Do you have difficulty, even with glasses, reading traffic signs, street signs, or store signs?
(Yes; No; Not applicable)
If yes, how much difficulty do you currently have?
(A little; A moderate amount; A great deal; Are unable to do the activity)
3. **VSQ_5**: Is it difficult for you to read signs in the streets, shops or other public places?
(No, not difficult; Yes, a little difficult; Yes, quite difficult; Yes, very difficult; I cannot see signs now because of my eyesight)
4. **ADVS_4b**: Would you say that you read street signs in daylight with: (PLEASE CHECK ONLY 1 ANSWER)
(No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty)

Content 10. Pouring liquid

1. **VAQ_9**: When pouring liquid, I have trouble judging the level of the liquid in a container, such as the level of coffee in a cup.
(Never; Rarely; Sometimes; Often; Always)
2. **VSQ_8**: How much difficulty do you have pouring liquids (water, tea, coffee from a jug or pot into a cup) because of trouble with your eyesight?
(No difficulty; Yes, a little difficulty; Yes, some difficulty; Yes, a great deal of difficulty; I cannot pour the liquid)
3. **CatScale_10**: Because of your eyesight, do you have difficulty pouring a hot drink?
(No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)

Content 11. Peripheral vision

1. **VFQOL_6**: When you are walking along, how much problem do you have noticing objects off to the side?
(Not at all; A little; Quite a lot; A lot)
2. **NEIVFQ_10**: Because of your eyesight, how much difficulty do you have noticing objects off to the side while you are walking along?
(No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty; Stopped doing this because of your eyesight)
3. **VAQ_2**: I have trouble noticing things in my peripheral vision.
(Never; Rarely; Sometimes; Often; Always)

Content 12. Color vision

1. **VFQOL_9**: How much problem do you have in recognizing colors?
(Not at all; A little; Quite a lot; A lot)
2. **QOLVFQ_17**: How much problem do you have in recognizing colors?
(Not at all; A little; Quite a lot; A lot)
3. **VAQ_25**: I have difficulty distinguishing between colors.
(Never; Rarely; Sometimes; Often; Always)

Content 13. Steps

1. **IVI_9**: In the past month, how much has your eyesight interfered with going down steps, stairs, or curbs?
(Not at all; Hardly at all; A little; A fair amount; A lot; Can’t do because of eyesight)
2. **CatScale_5**: Because of your eyesight, do you have difficulty going down stairs?
(No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)
3. **ADVS_6b**: Would you say that you walk down steps with: (PLEASE CHECK ONLY 1 ANSWER)
(No apprehension [or fear] at all; A little apprehension [or fear]; Moderate apprehension [or fear]; Extreme apprehension [or fear])

Content 14. Crossing the road

1. **VDA_13**: To what extent, if at all, does your vision interfere with your ability to cross the road?
(Not at all; A little; Quite a bit; A lot)
APPENDIX 1.
Continued

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item</th>
<th>Item/Response Option</th>
</tr>
</thead>
</table>
| 2 | CatScale_6 | Because of your eyesight, do you have difficulty **crossing the road**?
(No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do) |
| 3 | ADVS_5b/c | Because of your vision, do you have problems **crossing the street**?
(Not at all; Quite a lot; Very much) |

Content 15. Public transport

1. **VDA_14**
 - To what extent, if at all, does your vision interfere with your ability to **use public transport**?
 (Not at all; A little; Quite a bit; A lot)

2. **IVI_18**
 - In general, how much has your eyesight interfered with **traveling or using transport**? (bus and train)
 (Not at all; Hardly at all; A little; A fair amount; A lot; Can’t do because of eyesight)

3. **ADVS_5b/c**
 - Would you say that you use public transportation with: **(PLEASE CHECK ONLY 1 ANSWER)**
 (No visual difficulty at all; A little visual difficulty; Moderate difficulty because of vision; Extreme difficulty because of vision)
 Is it because of visual problems that you do not use public transportation?
 (Yes; No)

APPENDIX 2.
Items of the Five PROs (ADVS, Activities of Daily Living Scale; CatScale, Cataract Symptom Scale; NEIVFQ, National Eye Institute Visual Function Questionnaire; TyPE, Technology of Patient Experience; VDA, Visual Disability Assessment) That Are Common to at Least Three Item Contents of the Visual Function-14 (VF-14).

<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
</table>
| 1 | VF-14_1 | Do you have difficulty, even with glasses, **reading small print, such as labels on medicine bottles, a telephone book, and food labels**?
 (Yes; No; Not applicable)
 If yes, how much difficulty do you currently have?
 (A little; A moderate amount; A great deal) |
| 2 | VF-14_2 | Do you have difficulty, even with glasses, **reading a newspaper or a book**?
 (Yes; No; Not applicable)
 If yes, how much difficulty do you currently have?
 (A little; A moderate amount; A great deal; Are unable to do the activity) |
| 3 | VF-14_6 | Do you have difficulty, even with glasses, **reading traffic signs, street signs, or store signs**?
 (Yes; No; Not applicable)
 If yes, how much difficulty do you currently have?
 (A little; A moderate amount; A great deal; Are unable to do the activity) |
| 4 | VF-14_12 | Do you have difficulty, even with glasses, **watching television**?
 (Yes; No; Not applicable)
 If yes, how much difficulty do you currently have?
 (A little; A moderate amount; A great deal; Are unable to do the activity) |
| 5 | VF-14_13 | How much difficulty do you have **driving during the day** because of your vision? Do you have:
 (No difficulty; A little difficulty; A moderate amount of difficulty; A great deal of difficulty) |
| 6 | VF-14_14 | How much difficulty do you have **driving at night** because of your vision? Do you have:
 (No difficulty = 1; A little difficulty = 2; A moderate amount of difficulty = 3; A great deal of difficulty? = 4) |
| 7 | VDA_4 | To what extent, if at all, does your vision interfere with your ability to **watch television**?
 (Not at all; A little; Quite a bit; A lot) |
| 8 | VDA_8 | To what extent, if at all, does your vision interfere with your ability to **drive a car by day**?
 (Not at all; A little; Quite a bit; A lot) |
| 9 | VDA_9 | To what extent, if at all, does your vision interfere with your ability to **drive a car by night**?
 (Not at all; A little; Quite a bit; A lot) |
| 10 | NEIVFQ_8 | How much difficulty do you have **reading street signs or the name of stores**?
 (No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty; Stopped doing this because of your eyesight) |
| 11 | NEIVFQ_16 | How much difficulty do you have **driving at night**? Would you say you have:
 (No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty; Have stopped doing this because of your eyesight) |
| 12 | NEIVFQ_A3 | Wearing glasses, how much difficulty do you have **reading the small print in a telephone book, on a medicine bottle, or on legal forms**? Would you say:
 (No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty; Stopped doing this because of your eyesight) |
<table>
<thead>
<tr>
<th>S.No</th>
<th>PRO_item Number</th>
<th>Item/Response Option</th>
</tr>
</thead>
</table>
| 13 | ADVS_1b | Would you say you **drive at night** with:
| | | (No difficulty at all; 1. A little difficulty [go to 1d]; 3. Moderate difficulty [go to 1d]; 2. Extreme difficulty [go to 1d])
| | | Is it because of your visual problems that you are unable to drive at night?
| | | (1. Yes [go to 2a]; 2. No [go to 2a])
| 14 | ADVS_2b | Would you say that you **drive during the day** with: (PLEASE CHECK ONLY 1 ANSWER)
| | | (No visual difficulty at all; A little difficulty because of vision; Moderate difficulty because of vision; Extreme difficulty because of vision)
| | | It is because of visual problems that you are unable to drive during the day?
| | | (Yes; No)
| 15 | ADVS_9b/c | Would you say that you are able to **see television** with: (PLEASE CHECK ONLY 1 ANSWER)
| | | (No difficulty at all; A little difficulty; Moderate difficulty; Extreme difficulty)
| | | Is it because of visual problems that you are unable to watch television?
| | | (Yes; No; Not applicable)
| 16 | TyPE_7 | How much does your vision hinder, limit, or disable you in each of the following activities? **Watching television**
| | | (Not at all; A little bit; Some; Quite a lot; Totally disabled)
| 17 | TyPE_8 | How much does your vision hinder, limit, or disable you in each of the following activities? **Daytime driving**
| | | (Not at all; A little bit; Some; Quite a lot; Totally disabled)
| 18 | TyPE_9 | How much does your vision hinder, limit, or disable you in each of the following activities? **Night-time driving**
| | | (Not at all = 1; A little bit = 2; Some = 3; Quite a lot = 4; Totally disabled = 5; Don’t do for other reasons = 0)
| 19 | CatScale_1 | Do you have difficulty **reading small print**?
| | | (No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)
| 20 | CatScale_2 | Do you have difficulty **watching television**?
| | | (No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)
| 21 | CatScale_9 | Do you have difficulty **reading books or newspapers**?
| | | (No; A little difficulty; A moderate amount of difficulty; Very difficult; Unable to do)

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/932981/ on 01/10/2017