Reducing the generalised Sudoku problem to the Hamiltonian cycle problem

Michael Haythorpe

School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, 5042, Australia

Received 1 April 2016; received in revised form 16 September 2016; accepted 4 October 2016
Available online 27 October 2016

Abstract

The generalised Sudoku problem with N symbols is known to be NP-complete, and hence is equivalent to any other NP-complete problem, even for the standard restricted version where N is a perfect square. In particular, generalised Sudoku is equivalent to the, classical, Hamiltonian cycle problem. A constructive algorithm is given that reduces generalised Sudoku to the Hamiltonian cycle problem, where the resultant instance of Hamiltonian cycle problem is sparse, and has $O(N^3)$ vertices. The Hamiltonian cycle problem instance so constructed is a directed graph, and so a (known) conversion to undirected Hamiltonian cycle problem is also provided so that it can be submitted to the best heuristics. A simple algorithm for obtaining the valid Sudoku solution from the Hamiltonian cycle is provided. Techniques to reduce the size of the resultant graph are also discussed.

Keywords: Sudoku; NP-complete; Reduction; Hamiltonian cycle problem

1. Introduction

The generalised Sudoku problem is an NP-complete problem which, effectively, requests a Latin square that satisfies some additional constraints. In addition to the standard requirement that each row and column of the Latin square contains each symbol precisely once, Sudoku also demands block constraints. If there are N symbols, the Latin square is of size $N \times N$. If N is a perfect square, then the Latin square can be divided into N regions of size $\sqrt{N} \times \sqrt{N}$, called blocks. Then the block constraints demand that each of these blocks also contain each of the symbols precisely once. Typically, the symbols in a Sudoku puzzle are simply taken as the natural numbers 1 to N. In addition, Sudoku puzzles typically have fixed values in some of the cells, which dramatically limits the number of valid solutions. If the fixed values are such that only a unique solution remains, the Sudoku puzzle is said to be well-formed.

The standard version where $N = 9$ has, in recent years, become a common form of puzzle found in newspapers and magazines the world over. Although variants of the problem have existed for over a century, Sudoku in its current format is a fairly recent problem, first published in 1979 under the name Number Place. The name Sudoku only came...
into existence in the 1980s. In 2003, the generalised Sudoku problem was shown to be ASP-complete [1], which in turn implies that it is NP-complete. Hence, it is theoretically as difficult as any problems in the set \(\mathcal{NP} \) of decision problems for which a positive solution can be certified in polynomial time. Note that although there are more general versions variants of Sudoku (such as rectangular versions), the square variant described above where \(N \) is a perfect square suffices for NP-completeness. Hence, for the remainder of this manuscript, it will be assumed that we are restricted to considering the square variant.

Since being shown to be NP-complete, Sudoku has subsequently been converted to various NP-complete problems, most notably constraint satisfaction [2], boolean satisfiability [3] and integer programming [4]. Another famous NP-complete problem is the Hamiltonian cycle problem (HCP), which is defined as follows. For a simple graph (that is, one containing no self-loops or multi-edges) containing vertex set \(V \) and edge set \(E : V \rightarrow V \), determine whether any simple cycles containing all vertices in \(V \) exist in the graph. Such cycles are called Hamiltonian cycles, and a graph containing at least one Hamiltonian cycle is called Hamiltonian. Although HCP is defined for directed graphs, in practice most heuristics that actually solve HCP are written for undirected graphs.

Since both Sudoku and HCP are NP-complete, it should be possible to reduce Sudoku to HCP. In this manuscript, a constructive algorithm that constitutes such a reduction is given. The resultant instance of HCP is a sparse graph of order \(O(N^3) \). If many values are fixed, it is likely that the resultant graph can be made smaller by clever graph reduction heuristics; to this end, we apply a basic graph reduction heuristic to two example Sudoku instances to investigate the improvement offered.

It should be noted that reductions of NP-complete problems to HCP is an interesting but still largely unexplored field of research. Being one of the classical NP-complete problems (indeed, one of the initial 21 NP-complete problems described by Karp [5]), HCP is widely studied and several very efficient algorithms for solving HCP exist. HCP is also an attractive target problem in many cases because the resultant size of the instance is relatively small by comparison to other potential target problems. Indeed, the study of which NP-complete problems provide the best target frameworks for reductions is an ongoing field of research. It seems that certain NP-complete problems work better than others as target problems for reductions, in the sense that more problems can be efficiently reduced to them. For example, it is known that boolean satisfiability can be reduced to HCP in such a way that the size of the resultant HCP instance is a linear function of the size of the original instance. However, no such linearly-growing reduction is known for HCP to boolean satisfiability. Hence, any problem which can be reduced to boolean satisfiability with linear growth can also be reduced to HCP with linear growth, but the converse is not true. For more on this topic, as well as examples of other reductions to HCP, the interested reader is referred to [6–10].

In addition to direct HCP methods such as those by Chalaturnyk [11] or Baniasadi et al. [12], HCP can also be solved relatively efficiently (in the average case) even by algorithms designed for other NP-complete problems such as those for travelling salesman problem (see Applegate et al. [13] or Helsgaun [14]) and boolean satisfiability (see Johnson [15]). It appears that truly difficult instances of HCP are quite rare and typically need to be constructed specifically to be difficult (e.g. see Haythorpe [16,17]), and for the vast majority of cases, the problem can be solved efficiently by the existing heuristics. In addition, we also need to consider the case where no solution exists. For most NP-complete problems, such cases are given very little attention, as in general such a result cannot be confirmed in polynomial time; however, for HCP, some preliminary results exist and the subject is a topic of ongoing research (e.g. see Newcombe [18] and Filar et al. [19]).

2. Conversion to HCP

At its core, a Sudoku problem with \(N \) symbols (which we will consider to be the natural numbers from 1 to \(N \)) has three sets of constraints to be simultaneously satisfied.

1. Each of the \(N \) blocks must contain each number from 1 to \(N \) precisely once.
2. Each of the \(N \) rows must contain each number from 1 to \(N \) precisely once.
3. Each of the \(N \) columns must contain each number from 1 to \(N \) precisely once.

The variables of the problem are the \(N^2 \) cells, which can each be assigned any of the \(N \) possible values, although some of the cells may have fixed values depending on the instance.

In order to cast an instance of Sudoku as an instance of Hamiltonian cycle problem, we need to first encode every possible variable choice as a subgraph. The idea will be that traversing the various subgraphs in certain ways will
correspond to particular choices for each of the variables. Then, we will link the various subgraphs together in such a way that they can only be consecutively traversed if none of the constraints are violated by the variable choices.

In the final instance of HCP that is produced, the vertex set V will comprise of the following, where a, i, j and k all take values from 1 to N:

- A single starting vertex s and finishing vertex f.
- Block vertices: N^2 vertices b_{ak}, corresponding to number k in block a.
- Row vertices: N^2 vertices r_{ik}, corresponding to number k in row i.
- End Row vertices: N vertices t_i corresponding to row i.
- Column vertices: N^2 vertices c_{jk} corresponding to number k in column j.
- End Column vertices: N vertices d_j corresponding to column j.
- Puzzle vertices: $3N^3$ vertices x_{ijkl} corresponding to number k in position (i, j), for $l = 1, 2, 3$.
- End Puzzle vertices: N^2 vertices v_{ij} corresponding to position (i, j).
- Duplicate Puzzle vertices: $3N^3$ vertices y_{ijkl} corresponding to number k in position (i, j), for $l = 1, 2, 3$.
- End Duplicate Puzzle vertices: N^2 vertices w_{ij} corresponding to position (i, j).

The various vertices for the case when $N = 4$ can be visualised in the layout shown in Fig. 1. Certain vertices have been labelled to aid in understanding where the vertices lie. In particular, the large individual vertices on the left and right are s and f respectively. The block vertices b_{ak} are those in diagonal lines for each corner of the first puzzle. The row vertices r_{ik} are the small vertices laid out horizontally, with the solid vertices at the end of each horizontal line being the four end row vertices t_i. The column vertices c_{jk} are laid out vertically above to the second puzzle, with the solid vertices at the bottom of each vertical line being the four end column vertices d_j. Inside each square in position (i, j) of the first puzzle are twelve small vertices which are the puzzle vertices x_{ijkl}, and the solid vertex which is the end puzzle vertex v_{ij}. Similarly, the duplicate puzzle vertices and end duplicate puzzle vertices appear in the second puzzle. The Sudoku puzzle is duplicated as it is only convenient to satisfy two constraints at a time. Hence the vertices in the first puzzle will be linked together in such a way as to ensure the block constraints, and the row constraints, are simultaneously satisfied. Then, the vertices in the second puzzle will be linked together in such a way to ensure the solution in the second puzzle is a duplicate of the first, and the column constraints are also satisfied.

The graph will be linked together in such a way that any valid solution to the Sudoku puzzle will correspond to a Hamiltonian cycle in the following manner.

1. The starting vertex s is visited first.
2. For each a and k, suppose number k is placed in position (i, j) in block a. Then, vertex b_{ak} is visited, followed by all x_{ijkl} for $m \neq k$, followed by all y_{ijkl} for $m \neq k$. This process will ensure constraint 1 is satisfied.
3. For each i and k, suppose number k is placed in position (i, j) in row i. Then, vertex r_{ik} is visited, followed by x_{ijk3}, x_{ijk2}, x_{ijk1} and then v_{ij}. If $k = N$ (i.e. if i is about to be incremented or we are finished step 3) then this is followed by t_i. This process will ensure constraint 2 is satisfied.
4. For each \(j \) and \(k \), suppose number \(k \) is placed in position \((i, j)\) in column \(j \). Then, vertex \(c_{jk} \) is visited, followed by \(y_{ijk}, y_{ijk+2}, y_{ijk+1} \) and then \(w_{ij} \). If \(k = N \) (i.e. if \(j \) is about to be incremented or we are finished step 4) then this is followed by \(d_j \). This process will ensure constraint 3 is satisfied.

5. The finishing vertex \(f \) is visited last and the Hamiltonian cycle returns to \(s \).

What follows is a short description of how steps 1–5 are intended to work. A more detailed description follows in the next section.

The idea of the above is that we effectively create two identical copies of the Sudoku puzzle. In step 2, we place numbers in the puzzles, which are linked together in such a way to ensure the numbers are placed identically in both copies. Placing a number \(k \) into position \((i, j)\), contained in block \(a \), is achieved by first visiting \(b_{ak} \), and then proceeding to visit every puzzle vertex \(x_{ijk} \) except for when \(m = k \), effectively leaving the assigned number “open”, or unvisited. Immediately after visiting the appropriate puzzle vertices, the exact same duplicate puzzle vertices \(y_{ijk} \) are visited as well, leaving the assigned number unvisited in the second copy as well. Since each block vertex \(b_{ak} \) is only visited once, each number is placed precisely once in each block, satisfying constraint 1. The hope is, after satisfying constraint 1, that the row and column constraints have also been satisfied. If not, it will prove impossible to complete steps 3 and 4 without needing to revisit a vertex that was visited in step 2.

In step 3, we traverse the row vertices one at a time. If number \(k \) was placed in position \((i, j)\), then row vertex \(r_{ik} \) is followed by the unvisited vertices \(x_{ijk}, x_{ijk+2}, x_{ijk+1} \) and then by the end puzzle vertex \(v_{ij} \). Once all \(r_{jk} \) vertices have been traversed for a given \(i \), we visit the end row vertex \(t_i \). Note that the three \(x \) vertices visited for each \(i \) and \(k \) in step 3 are the three that were skipped in step 2. Therefore, every puzzle vertex is visited by the time we finish traversing all the row vertices. However, if row \(i \) is missing the number \(k \), then there will be no available unvisited puzzle vertices to visit after \(r_{ik} \), so this part of the graph can only be traversed if all the row constraints are satisfied by the choices in step 2.

Step 4 evolves analogously to step 3, except for \(c_{jk} \) instead of \(r_{ik} \), \(y_{ijk} \) instead of \(x_{ijk} \), \(w_{ij} \) instead of \(v_{ij} \) and \(d_j \) instead of \(t_i \). Hence, this part of the graph can only be traversed if all the column constraints are also satisfied by the choices in step 2.

Assuming the graph must be traversed as described above, it is clear that all Hamiltonian cycles in the resultant instance of HCP correspond to valid Sudoku solutions. In order to show this is the case, we first describe the set of directed edges \(E \) in the graph. Note that in each of the following, if \(k + 1 \) or \(k + 2 \) are bigger than \(N \), they should be wrapped back around to a number between 1 and \(N \) by subtracting \(N \). For example, if \(k + 2 = N + 1 \) then it should be taken as 1 instead.

- \((s, b_{11})\), \((d_N, f)\) and \((f, s)\)
- \((b_{ak}, x_{i,j,(k+1),l})\) for all \(a, k \), and \((i, j)\) contained in block \(a \)
- \((x_{ijk}, x_{ijk+2}, x_{ijk+1}, x_{ijk+3})\) and \((x_{ijk}, x_{ijk+2})\) for all \(i, j, k \)
- \((x_{ijk+3}, x_{i,j,(k+1),1})\) for all \(i, j, k \)
- \((y_{ijk+1}, y_{ijk+2}, y_{ijk+1}, y_{ijk+3})\) and \((y_{ijk}, y_{ijk+2})\) for all \(i, j, k \)
- \((y_{ijk+1}, y_{ijk+1},(k+1),1)\) for all \(i, j, k \)
- \((x_{ijk+3}, y_{i,j,(k+2),1})\) for all \(i, j, k \)
- \((y_{ijk+3}, b_{a,(k+2)}\) for all \(i, j \), and for \(k \neq N - 1 \), where \(a \) is the block containing position \((i, j)\)
- \((y_{i,j,N-1,3}, b_{a+1,1})\) for all \(i, j \) except for the case where both \(i = N \) and \(j = N \), where \(a \) is the block containing position \((i, j)\)
- \((y_{N,N,N-1,3}, r_{11})\)
- \((r_{ik}, x_{ijk+3})\) for all \(i, j, k \)
- \((x_{ijk+1}, v_{ij})\) for all \(i, j, k \)
- \((v_{ij}, t_i)\) for all \(i, j \)
- \((t_i, r_{i+1,1})\) for all \(i < N \)
- \((t_N, c_{11})\)
- \((c_{jk}, y_{ijk+3})\) for all \(i, j, k \)
- \((y_{ijk}, w_{ij})\) for all \(i, j, k \)
- \((w_{ij}, c_{jk})\) for all \(i, j, k \)
- \((w_{ij}, d_j)\) for all \(i, j \)
- \((d_j, c_{j+1,1})\) for all \(j < N \).
3. Detailed explanation

We need to show that every valid Hamiltonian cycle corresponds to a valid Sudoku solution. Note that at this stage, we have not handled any fixed cells, so any valid Sudoku solution will suffice. Fixed cells will be taken care of in Section 5.

Theorem 3.1. Every Hamiltonian cycle in the graph constructed in the previous section corresponds to a valid Sudoku solution, and every valid Sudoku solution has corresponding Hamiltonian cycles.

Proof. First of all, note that vertices x_{ijk} are degree 2 vertices, and so they ensure that if vertex x_{ij1} is visited before x_{ijk}, it must be proceeded by x_{ij2} and then x_{ijk}. Likewise, if vertex x_{ij3} is visited before x_{ij1}, it must be proceeded by x_{ij2} and x_{ij1}. The same argument holds for vertices y_{ijk}. This will ensure that the path any Hamiltonian cycle must take through the x and y vertices is tightly controlled.

Now, suppose we have a valid Sudoku solution. Consider each of the block vertices b_{ak}, which each link to $x_{i,j,(k+1),1}$ for all (i,j) contained in block a. From each block vertex, one of these edges must be chosen. Suppose number k is to be placed in position (i,j) contained in block a. Then the edge $(b_{ak}, x_{i,j,(k+1),1})$ is traversed. From here, the cycle must continue through vertices $x_{i,j,(k+1),2}$ and $x_{i,j,(k+1),3}$. It is then able to either exit to one of the y vertices, or continue visiting x vertices. However, as will be seen later, if it exits to the y vertices at this stage, it will be impossible to complete the Hamiltonian cycle. So instead it continues on to $x_{i,j,(k+2),1}$, and so on. Once only all of the x_{ijkl} vertices for $m \neq k$ have been visited (noting that i and j are fixed here) can it safely exit to the y vertices — refer this as Assumption 1 (we will investigate later what happens if Assumption 1 is violated for any i, j, k). The exit to y vertices will occur immediately after visiting vertex $x_{ij1,(k-1),3}$, which is linked to vertex $y_{ij1,(k+1),1}$. Note that by Assumption 1, vertices x_{ijkl} are unvisited for $l = 1, 2, 3$. Then, from the y vertices, the same argument as above applies again, and eventually vertex $y_{ij1,(k-1),3}$ is departed, linking to vertex $b_{a,k+1}$ if $k < N$, or to vertex $b_{a+1,1}$ if $k = N$. Refer to the equivalent assumption on visiting the y vertices as Assumption 2.

Consider, for example, the situation where the number 2 is in the top left box in block 1 (that is, position (1, 1) on the entire Sudoku puzzle) in the case where $N = 4$. Fig. 2 shows the path taken in this case. Specifically, $b_{12} - x_{1131} - x_{1132} - x_{1133} - x_{1141} - x_{1142} - x_{1143} - x_{1111} - x_{1112} - x_{1113} - y_{1113} - y_{1112} - y_{1111} - y_{1142} - y_{1143} - y_{1111} - y_{1112} - y_{1113}$. The next step would then be to link to b_{13} to handle the location of number 3 in the first block. Note that, by Assumptions 1 and 2, the only vertices not visited in position (1, 1) are $x_{1121}, x_{1122}, x_{1123}, y_{111}$ in the first puzzle and $y_{1121}, y_{1122}, y_{1123}, w_{11}$ in the duplicate puzzle.

This process continues until all the block vertices have been traversed, at which time vertex $y_{N,N,N-1,3}$ links to r_{11}. Note that, other than by violating Assumptions 1 or 2, it is not possible to have deviated from the above path. By the time we arrive at r_{11}, all the block vertices b_{ak} have been visited. Also, every puzzle vertex x_{ijkl} and duplicate puzzle vertex y_{ijkl} has been visited corresponding to placing number k in position (i, j).

Next, each of the row vertices r_{jk} links to x_{ijk} for all i, j, k. For each i and k, one of these edges must be chosen. However, by Assumption 1, all vertices x_{ijk} have already been visited except for those corresponding to the number k being placed in position (i, j). If the choices in the previous step violate the row constraints, then there will be a row i that does not contain a number k, and subsequently there will be no valid edge emanating from vertex r_{ik}. Hence, if the choices made in step 2 violate the row constraints, and Assumption 1 is correct, it is impossible to complete a Hamiltonian cycle. If the choices in the previous step satisfy the row constraints, then there should always be precisely one valid edge to choose here. Once vertex x_{ijk} is visited, vertices x_{ijk2} and x_{ijk1} must follow, at which point the only remaining valid choice is to proceed to vertex y_{ij3}. From here, any row vertex r_{im} that has not yet been visited can be visited. If all, have been visited, then t_{i} can be visited instead. Note that once t_{i} is visited, it is impossible to return to any r_{ik} vertices, so they must all be visited before t_{i} is visited.
Fig. 3 shows the path taken (the solid line) from vertex r_{12} that visits the remaining vertices in position $(1, 1)$ of the first puzzle. The thinner line shows the path taken in the previous step. Note that all vertices in position $(1, 1)$ of the first puzzle are visited after this step.

An analogous argument to above can be made for the column vertices c_{jk}. Note that if Assumptions 1 and 2 are correct, then vertex y_{ijkl} will be unvisited at the start of step 4 if and only if x_{ijkl} was unvisited at the start of step 3. The situation where vertex c_{12} visits the remaining vertices in position $(1, 1)$ of the duplicate puzzle is displayed in Fig. 4. Therefore, we see that if Assumptions 1 and 2 are correct, then it is only possible to complete the Hamiltonian cycle if the choices made in step 2 correspond to a valid Sudoku solution.

Now consider the situation where Assumption 1 is violated, that is, after step 2 there exists unvisited vertices x_{ijkl} and x_{ijm} for some i, j, and $k \neq m$. Then during step 3, without loss of generality, suppose vertex r_{ik} is visited before r_{im}. As argued above, this will be followed by vertices x_{ijk3}, x_{jk2}, x_{ijk1}, at which point visiting vertex v_{ij} is the only available choice. Then later, r_{im} is visited. It must visit x_{im3}, x_{ijm2}, x_{ijm1} and is then, again, forced to x_{ijm3}, x_{ijm2}, x_{ijm1} and is then, again, forced to proceed to vertex v_{ij}. However, since vertex v_{ij} has already been visited, this is impossible and the Hamiltonian cycle cannot be completed. If Assumption 2 is violated, and it is vertices y_{ijkl} and y_{ijm} that are unvisited after step 2, an analogous argument can be made involving step 4. Hence, every Hamiltonian cycle in the graph must satisfy Assumptions 1 and 2. This completes the proof.

Since any valid Sudoku solution has corresponding Hamiltonian cycles, the resulting instance of HCP is equivalent to a blank Sudoku puzzle. In a later section, the method for removing edges based on fixed numbers for a given Sudoku instance is described. Since the instance of HCP can be constructed, and the relevant edges removed, in polynomial time as a function of N, the algorithm above constitutes a reduction of Sudoku to the Hamiltonian cycle problem.

4. Size of “blank” instance

The instance of HCP that emerges from the above conversion consists of $6N^3 + 5N^2 + 2N + 2$ vertices, and $19N^3 + 2N^2 + 2N + 2$ directed edges. For the standard Sudoku puzzle where $N = 9$, this corresponds to a directed graph with 4799 vertices and 14033 directed edges.

All of the best HCP heuristics currently available assume that the instance is undirected. There is a well-known conversion of directed HCP to undirected HCP which can be performed as follows. First, produce a new graph which has three times as many vertices as the directed graph. Then add edges to this new graph by the following scheme, where n is the number of vertices in the directed graph:

1. Add edges $(3i - 1, 3i - 2)$ and $(3i - 1, 3i)$ for all $i = 1, \ldots, n$.
2. For each directed edge (i, j) in the original graph, add edge $(3i, 3j - 2)$.

In the present case, this results in an undirected instance of HCP consisting of $18N^3 + 15N^2 + 6N + 6$ vertices and $31N^3 + 12N^2 + 6N + 6$ edges. This implies that the average degree in the graph grows monotonically with N, but towards a limit of $\frac{31}{9}$, so the resultant graph instance is sparse. For $N = 4$, the average degree is just slightly above 3.1, and for $N = 9$ the average degree is just under 3.3.

A trick can be employed to reduce the number of vertices in the undirected graph. Consider the vertices in the undirected graph corresponding to the x and y vertices. In particular, consider the set of 9 vertices corresponding to x_{ijk1}, x_{ijk2} and x_{ijk3}. The nine vertices form an induced subgraph such as that displayed at the top of Fig. 5. There are
Fig. 4. The path taken when placing the number 2 in position (1, 1) of column 1.

Fig. 5. The induced subgraph created after the conversion to an undirected graph, corresponding to vertices x_{ijk1}, x_{ijk2} and x_{ijk3}, and an alternative subgraph with one vertex removed.

incoming edges incident on the first and seventh vertices, and outgoing edges incident on the third and ninth vertices. If the induced subgraph is entered via the first vertex, it must be departed via the ninth vertex, or else a Hamiltonian cycle cannot be completed. Likewise, if the induced subgraph is entered via the seventh vertex, it must be departed via the third vertex. It can be seen by inspecting all cases that if the fifth vertex is removed, and a new edge is introduced between the fourth and sixth vertices, the induced subgraph retains these same properties. This alternative choice is displayed at the bottom of Fig. 5. Such a replacement can be made for each triplet x_{ijkl} or y_{ijkl}. Hence, we can remove $2N^3$ vertices and $2N^3$ edges from the undirected graph for a final total of $16N^3 + 15N^2 + 6N + 6$ vertices and $29N^3 + 12N^2 + 6N + 6$, although at the cost of raising the average degree by a small amount (roughly between 0.1 and 0.15, depending on N).

5. Handling fixed numbers

In reality, all meaningful instances of Sudoku have fixed values in some of the N^2 cells. Although this could potentially be handled by removing vertices, it would then be necessary to redirect edges appropriately. Instead, it is simpler to remove edges that cannot be used while choosing these fixed values. Once this is performed, a graph simplifying heuristic could then be employed to remove unnecessary vertices if desired.

For each fixed value, $12N - 12$ edges can be identified as redundant, and be removed. However, when there are multiple fixed values, some edges may be identified as redundant multiple times, so $12N - 12$ is only an upper bound on the number of edges that can be removed per fixed value. For example, suppose one cell has a fixed value of 1, and another cell within the same block has a fixed value of 2. From the first fixed value, we know that all other entries in the block must not be 1. From the second fixed value, we know that the second cell must have a value of 2, and hence
not 1. Then the edge corresponding to placing a value of 1 in the second cell would be identified as redundant twice. The exact number of redundant edges identified depends on the precise orientation of the fixed values.

For each fixed value \(k \) in position \((i, j)\), and block \(a \) containing position \((i, j)\), the following sets of edges are redundant and may be removed (an explanation for each set follows the list):

1. \((b_{ak}, x_{mnk1})\) for all choices of \(m \) and \(n \) such that block \(a \) contains \((m, n)\), and also \((m, n) \neq (i, j)\).
2. \((b_{an}, x_{jm1})\) for \(m \neq k \).
3. \((x_{m,n,(k-1),3}, y_{m,n,(k+1),1})\) for all choices of \(m \) and \(n \) such that block \(a \) contains \((m, n)\), and also \((m, n) \neq (i, j)\).
4. \((x_{j,m,(m-1),3}, y_{i,j,(m+1),1})\) for \(m \neq k \).
5a. If \(k < N \): \((y_{m,n,(k-1),3}, b_{a,k+1})\) for all choices of \(m \) and \(n \) such that block \(a \) contains \((m, n)\), and also \((m, n) \neq (i, j)\).
5b. If \(k = N \) and \(a < N \): \((y_{m,n,(k-1),3}, b_{a+1,1})\) for all choices of \(m \) and \(n \) such that block \(a \) contains \((m, n)\), and also \((m, n) \neq (i, j)\).
5c. If \(k = N \) and \(a = N \): \((y_{m,n,(k-1),3}, r_{11})\) for all choices of \(m \) and \(n \) such that block \(a \) contains \((m, n)\), and also \((m, n) \neq (i, j)\).
6a. \((y_{i,j,(m-1),3}, b_{a,m+1})\) for \(m \neq k \) and \(m \neq N \).
6b. If \(k < N \) and \(a < N \): \((y_{i,j,(N-1),3}, b_{a+1,1})\).
6c. If \(k < N \) and \(a = N \): \((y_{i,j,(N-1),3}, r_{11})\).

6. Recovering the Sudoku solution from a Hamiltonian cycle

The constructive algorithm above produces a HCP instance for which each solution corresponds to a valid Sudoku solution. Once such a solution is obtained, the following algorithm reconstructs the corresponding Sudoku solution:

Denote by \(h \) the Hamiltonian cycle obtained. For each \(i = 1, \ldots, N \) and \(j = 1, \ldots, N \), find vertex \(v_{ij} \) in \(h \). Precisely one of its adjacent vertices in \(h \) will be of the form \(x_{ijk1} \) for some value of \(k \). Then, number \(k \) can be placed in the cell in the \(i \)th row and \(j \)th column in the Sudoku solution.

Suppose that the vertices are labelled in the order given in Section 2. That is, \(s \) is labelled as 1, \(f \) is labelled as 2, the \(b_{ak} \) vertices are labelled \(3, 4, \ldots, N^2 - 2 \), and so on. Then, for each \(i \) and \(j \), vertex \(v_{ij} \) will be labelled...
3N^3 + 3N^2 + (i + 1)N + (j + 2), and vertex \(x_{ijk} \) will be labelled \(3iN^2 + (3j - 1)N + 3k \). Of course, if the graph has been converted to an undirected instance, or if it has been reduced in size by a graph reduction heuristic, these labels will need to be adjusted appropriately.

7. Reducing the size of the HCP instances

After constructing the HCP instances using the above method, graph reduction techniques can be applied. Most meaningful instances of Sudoku will have many fixed values, which in turn leads to an abundance of degree 2 vertices. In order to test the effectiveness of such techniques, a very simple reduction algorithm was used. Iteratively, the algorithm iteratively checks the following two conditions until there are no applicable reductions remaining:

1. If two adjacent vertices are both degree 2, they can be contracted to a single vertex.
2. If a vertex has two degree 2 neighbours, all of its incident edges going to other vertices can be removed.

Note that the second condition above leads to three adjacent degree 2 vertices which will in turn be contracted to a single vertex. The removal of edges when the second condition is satisfied often leads to additional degree 2 vertices being formed which allows the algorithm to continue reducing.

Note also that this simple graph reduction heuristic is actually hampered by the graph reduction method described in Section 4, since that method eliminates many degree 2 vertices. It is likely that a more sophisticated graph reduction heuristic could be developed that incorporates both methods.

The above heuristic was applied to both a well-formed (that is, uniquely solvable) Sudoku instance with 35 fixed values, as well as one of the Sudoku instances from the repository of roughly 50 000 instances maintained by Royle [20]. The instances in that repository all contain precisely 17 fixed numbers, and are all well-formed; it was recently proved via a clever exhaustive computer search that 17 is the minimal number of fixed values for a well-formed Sudoku problem with 9 symbols [21]. The two instances tested are displayed in Fig. 6.

After the simple reduction heuristic above was applied to the first Sudoku instance, it had been reduced from an undirected instance with 14 397 vertices and 22 217 edges, to an equivalent instance with 8901 vertices and 14 175 edges. Applying the above reduction algorithm to the second Sudoku instance from Royle’s repository reduced it from an undirected instance with 14 397 vertices and 22 873 edges, to an equivalent instance with 12 036 vertices and 19 301 edges. In both cases the reduction is significant, although obviously more there are greater opportunities for reduction when there are more fixed values.

Both instances were solved by Concorde [13] which is arguably the best algorithm for solving HCP instances containing large amount of structure, as its branch-and-cut method is very effective at identifying sets of arcs that must be fixed all at once, or not at all, particularly in sparse graphs. Technically, Concorde actually converts the HCP instance to an equivalent TSP instance but does so in an efficient way. The first instance was solved during Concorde’s presolve phase, while the second instance required 20 iterations of Concorde’s branch and cut algorithm\(^1\) to discover

\(^1\) It should be noted that Concorde does use a small amount of randomness in its execution. The random seed used in this experiment was 1453347272.
a solution. This would seem to indicate that the first Sudoku instance can be solved without requiring any amount of guessing. The two solutions were then interpreted via the algorithm in Section 6 to provide solutions to the initial Sudoku instances; those solutions are displayed in Fig. 7.

The above example indicates that the size of reduction possible is likely to depend on the number of fixed values, which is sensible since the difficulty of the instance also depends on the number of fixed values. To investigate this, a random Sudoku generator [22] was used to generate 500 instances. Of these 500, there were fifty instances containing 20 fixed values, fifty containing 21 fixed values, and so forth up to 29 fixed values. The generator used is designed to produce difficult instances of Sudoku. For each number of fixed values, the mean number of remaining vertices and edges after the reduction algorithm is displayed in Table 1. It appears from that table that there is a monotonic increase in the amount of the graph that can be reduced as the number of fixed values increases. The reduction algorithm was also applied to the 49,151 Sudoku instances containing 17 fixed values from Royle repository, with the average number of vertices and edges remaining being 11956.51 and 19171.91 respectively.

References