






at relative abundances of �0.1% in 12 and 2 patients, respectively. Core taxa repre-
sented multiple distinct operational taxonomic units (OTUs) within the Bacteroidetes,
Firmicutes, Proteobacteria, Fusobacteria, and Actinobacteria phyla, which differed sub-
stantially in relative abundance between subjects (Fig. 2).

Impact of erythromycin treatment on the abundance of discrete bacterial taxa
within the oropharynx. Oropharyngeal microbiota compositions differed significantly

FIG 2 Phylogenetic relationship of OTUs comprising the core microbiota and OTUs that contributed to the microbial community
differences between the placebo-treated and erythromycin-treated groups after 48 weeks of low-dose erythromycin. The relative
abundances of OTUs that constituted the core microbiota are represented by the horizontal boxplots. The OTUs that significantly differed
between the placebo and erythromycin groups after 48 weeks of treatment are indicated, with the log2 fold changes represented by the
red circles (FDR-adjusted P � 0.05).
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between the erythromycin and placebo groups at 48 weeks (ANOSIM R � 0.054, P �

0.003) (Fig. S2B). Alpha diversity measures of microbial community evenness signifi-
cantly decreased with time in both the erythromycin and placebo groups. However,
pairwise comparison at each time point indicated no significant differences in other
alpha diversity measures assessed (Fig. S3). There was also no difference in between-
group or within-group total bacterial loads (placebo baseline load, 1.67 [median;
interquartile range {IQR}, 0.40 to 3.60] � 108 copies 16S rRNA/swab; placebo load at
48 weeks, 1.33 [0.41 to 3.20] � 108; erythromycin baseline load, 1.66 [0.63 to 3.30] �

108 copies 16S rRNA/swab; erythromycin load at 48 weeks, 1.80 [0.66 to 2.75] � 108).
However, significant changes were observed in the relative abundances of the mem-
bers of a specific subset of bacterial taxa.

Fold change comparisons at the genus level between the erythromycin and placebo
groups at 48 weeks performed using DESEQ2 software indicated decreased relative
abundances of four OTUs assigned to Actinomyces in patients who received erythro-
mycin (for OTU62, log2 fold change � �2.06 � 0.53, false-discovery-rate [FDR]-adjusted
P � 0.024; for OTU1043, log2 fold change � �2.51 � 0.69, FDR P � 0.027; for OTU1754,
log2 fold change � �2.69 � 0.75, FDR P � 0.027; for FJ470572, log2 fold change �

�1.86 � 0.55, FDR P � 0.041) (Fig. 2). One OTU (FJ558078) assigned to the genus
Streptococcus decreased in relative abundance (log2 fold change � �1.57 � 0.41, FDR
P � 0.024) whereas two OTUs assigned as Haemophilus increased in relative abundance
in patients who received erythromycin (for OTU198, log2 fold change � 2.16 � 0.61,
FDR P � 0.027; for OTU744, log2 fold change � 1.65 � 0.49, FDR P � 0.041) (Fig. 2). Two
of the OTUs could be identified using the Ribosomal Database project (RDP) classifier
tool, one as Actinomyces odontolyticus (RDP sequence match score of �90%) and the
other as Haemophilus parainfluenzae (RDP sequence match score of 92%), consistent
with their assignment within the bacterial phylogenetic tree. The Streptococcus-
assigned OTU was phylogenetically closest to S. pseudopneumoniae (Fig. 2).

Pairwise comparison of the relative abundances of these taxa within subjects at
baseline and week 48 showed a consistent decrease in the relative abundance of
Actinomyces OTUs in subjects receiving erythromycin but not in those receiving pla-
cebo (Fig. S4A to D). However, such consistent trends were not observed for H. para-
influenzae or S. pseudopneumoniae OTUs (Fig. S4E to G). Quantitative PCR, which was
performed to validate the observed alterations in the relative abundances of discrim-
inant taxa, supported these findings. Levels of the Actinomyces genus decreased
significantly with erythromycin treatment (baseline ΔCT � 4.73 [median; ΔCT values are
based on differences in threshold cycle {CT} values between the target gene and the
reference {16S rRNA} gene], IQR � 4.17 to 5.94; ΔCT at 48 weeks � 5.24, IQR � 4.63 to
6.15 [Wilcoxon test, one-tailed, P � 0.046]) but not placebo treatment (baseline ΔCT �

4.94 [median], IQR � 4.33 to 6.25; ΔCT at 48 weeks � 5.11, 4.18 to 5.75 [Wilcoxon test,
one-tailed, P � 0.480]) (Fig. 3). However, treatment-associated differences in the levels
of A. odontolyticus, H. parainfluenzae, and S. pseudopneumoniae did not achieve statis-
tical significance (Fig. 3). In addition, quantitative PCR analysis of potentially pathogenic
members of discriminant genera, including H. influenzae (placebo P � 0.758; erythro-
mycin P � 0.513 [Wilcoxon test, two-tailed]) and S. pneumoniae (placebo P � 0.193;
erythromycin P � 0.353 [Wilcoxon test, two-tailed]), indicated no significant difference
in their absolute levels between the treatment and placebo groups.

Low-dose erythromycin significantly increases antibiotic resistance gene car-
riage within the oropharyngeal microbiota. erm(A), erm(B), erm(C), erm(F), msrA, and
mef are transmissible macrolide resistance genes that are known to be carried by
bacteria commonly found in the oropharynx (23–25). The carriage of these genes was
assessed in the study population. At baseline, the most commonly carried resistance
gene was mef (detected in most subjects), while erm(B) (placebo � 53.6%, erythromy-
cin � 60.5%) and erm(F) (placebo � 53.6%, erythromycin � 41.9%) were detected in
approximately half of the subjects (Table 2). Lower rates of carriage were observed for
erm(C) (placebo � 17.1%, erythromycin � 11.6%) and erm(A) (placebo � 2.4%, eryth-
romycin � 4.7%). msrA was detected in one subject at baseline. Neither the treatment
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FIG 3 Comparison of ΔCT values between the placebo group and erythromycin group at baseline and at 48 weeks for taxa that
contributed to the differences between groups. (A) Actinomyces spp. (B) Actinomyces odontolyticus. (C) Haemophilus parainfluenzae.
(D) Haemophilus influenzae. (E) Streptococcus pneumoniae or Streptococcus pseudopneumoniae. Statistical analyses of comparisons
between paired samples from the placebo group and the erythromycin group were performed using the Wilcoxon test at a
significance level of 0.05. A one-tailed test was used for the bacterial taxa Actinomyces, Actinomyces odontolyticus, and Haemophilus
parainfluenzae, the relative abundances of which were identified by DESEQ2 analysis to be significantly altered.

TABLE 2 Antibiotic resistance gene carriage in the placebo and erythromycin groups at
baseline and at the end of erythromycin treatment (48 weeks)

Resistance
gene

% gene carriage in indicated group
P value
(Fisher’s exact
test, 48 wks)

Placebo Erythromycin

Baseline 48 wks Baseline 48 wks

erm(A) 2.4 2.4 4.7 4.7 �0.99
erm(B) 53.6 56.1 60.5 69.8 0.26
erm(C) 17.1 12.2 11.6 14.0 �0.99
erm(F) 53.6 48.8 41.9 44.2 0.82
msrA 0.0 2.4 0.0 0.0 0.49
mef 100.0 95.1 100.0 97.7 0.61
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group nor the control group showed a significant change in the rates of resistance gene
carriage during the 48-week trial (Fisher’s exact test, P � 0.05) (Fig. 4A) (Table 2).

As the erm(B), erm(F), and mef resistance genes were found to be common within
the study population, levels of resistance gene carriage within subjects were assessed
by quantifying the resistance gene copy number and were normalized to total bacterial
load. Levels of both erm(B) and mef increased significantly between baseline and week
48 in the treatment group [erm(B) baseline, median log2 erm(B)/16S ratio � �4.03,
IQR � �7.24 to �1.92; erm(B) at 48 weeks, median log2 erm(B)/16S ratio � �2.93,
IQR � �5.65 to �1.73 [Wilcoxon test, P � 0.012]; mef baseline, median log2 mef/16S
ratio � �12.07, IQR � �13.15 to �11.65; mef at 48 weeks, median log2 mef/16S ratio �

�11.67, IQR � �12.64 to �11.27 [P � 0.029]) but not in the placebo group (Fig. 4B and
D). In contrast, levels of erm(F) were not significantly altered in the control group or the
treatment group after 48 weeks (Fig. 4C).

The relationship of PCR-based resistance gene detection to culture-based assess-
ments of macrolide-resistant streptococci performed within the original trial (3) indi-
cated that while 15 of the subjects assessed had no resistant streptococci isolated by
culture, 8 were found to carry erm(B) and 1 carried the erm(C) resistance gene.

DISCUSSION

Culture-based studies have clearly demonstrated that low-dose macrolide therapy
exerts a substantial selective pressure in the oropharyngeal microbiota, as reflected in
a proportional increase in the level of macrolide-resistant streptococci (3–5). Indeed,
previous culture-based assessment of streptococci isolated from the subjects examined

FIG 4 (A) Effects of erythromycin treatment on the carriage of antibiotic resistance genes, (B to D) Effects of erythromycin treatment
on the levels of (B) erm(B), (C) erm(F), and (D) mef genes. The percentages of increase or decrease in antibiotic resistance gene carriage
in the placebo group (open circle) and the erythromycin group (closed circle) at trial week 48 were calculated based on the increment
or decrement from baseline values. Quantitative levels of the erm(B) and mef genes were normalized to the total bacterial load. The
log2 DNA levels for the placebo and erythromycin groups at baseline and at the end of placebo or erythromycin treatment were
plotted. Statistical analyses of differences between data from the different time points were performed using the Wilcoxon test at a
significance level of 0.05.
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here showed that erythromycin resistance increased significantly during the trial period
(median change, 27.7%, P � 0.001) (4). However, in contrast to the widespread
disruption of human commensal microbiota that can result from acute antibiotic
exposure (26), the changes in microbiota composition that were observed with eryth-
romycin treatment were very modest and limited to a discrete group of taxa within the
Actinomyces genus.

Our findings are broadly consistent with a previous study that assessed the impact
of 6 months of azithromycin treatment in patients with severe asthma. Using 16S rRNA
gene amplicon sequencing, Lopes et al. reported changes in oropharyngeal microbiota
in a relatively small number of bacterial taxa, including members of the Actinomyces
genus (27). The modest changes in microbiota composition that we found follow-
ing long-term erythromycin treatment are likely to reflect a combination of the
relatively weak selective pressure that low-dose erythromycin treatment represents and
�microbiota resistance,� a phenomenon by which complex bacterial systems can remain
relatively unchanged in spite of the presence of a disruptive force (28). Microbiota
resistance has been described in both the saliva of healthy individuals and the lower
airways of patients with cystic fibrosis during antibiotic challenge (29, 30).

The observed decreases in Actinomyces abundance are consistent with the low
relative tolerance of members of this genus with respect to macrolide antibiotics (31).
Whether these reductions in Actinomyces abundance are of clinical significance, how-
ever, is not yet clear. Members of Actinomyces, a genus of Gram-positive, facultative
anaerobes, are typically considered commensals and can be commonly detected in the
oropharynx, gastrointestinal tract, and female genital tract of healthy individuals (31).
However, Actinomyces species are capable of causing opportunistic lower respiratory
tract infection, particularly in the form of pulmonary actinomycosis (31), including in
patients with bronchiectasis (32, 33). While actinomycosis is most commonly associated
with Actinomyces israelii (31), infections caused by A. odontolyticus, a species that was
observed to be reduced in relative abundance with erythromycin treatment, have been
reported in rare instances, including in pulmonary infections (34, 35).

Long-term antibiotic exposure is associated with the development of resistance
that can persist well beyond the treatment period (21). Importantly, selection of
resistance can occur even where the antibiotic concentration is below the MIC for a
given bacterial population (36). We assessed carriage of six transmissible macrolide
resistance genes that can be carried by common members of the oropharyngeal
microbiota (24, 37, 38), observing a significant increase in the levels of erm(B) and mef
genes. This finding is consistent with the increased carriage of erm(B) in streptococci
reported in healthy individuals following 180 days of treatment with azithromycin or
clarithromycin (39) and with culture-based assessments of resistance carriage following
long-term macrolide use in bronchiectasis patients (40). While the erm(B) and mef
genes are often associated with streptococcal pathogens (41), they are also common in
nonstreptococcal respiratory pathogens, including H. influenzae (24) and S. aureus (42),
and in upper respiratory tract commensals such as Gemella (22). Importantly, erm(B)
and mef genes can move horizontally between bacterial species via conjugation or
transformation (22, 24), allowing commensal taxa to act as resistance reservoirs.

The BLESS trial reported that subjects who received erythromycin treatment expe-
rienced significantly fewer pulmonary exacerbations than those who received placebo
(4). In our study population, members of the erythromycin group also had a significant
reduction in the number of exacerbations (P � 0.03), in keeping with prior trial findings.
The fact that nonmacrolide antibiotic exposure was higher in the placebo group, but
that no significant difference was observed between the placebo baseline microbiota
composition and the week 48 composition, suggests that antibiotic therapy used for
the treatment of pulmonary exacerbations did not contribute substantially to observed
shifts in oropharyngeal microbiology.

Our study had a number of limitations that should be considered. Oropharyngeal
swabs were available for only 84 of the 112 subjects (total n � 117) who completed the
original BLESS trial, although the patient characteristics of the two cohorts were broadly
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comparable (see Table S1 in the supplemental material). Basing our analysis on subjects
of the BLESS trial provided substantial advantages in terms of the uniformity of samples
and the availability of patient metadata; however, the use of specific selection criteria
for subjects means that our study population might not be representative of the wider
bronchiectasis patient population. Furthermore, our analysis focused on the orophar-
ynx, and while the impact of long-term erythromycin treatment on microbiota within
other regions of the upper respiratory tract is likely to be consistent with the results
reported here, changes in composition and resistome characteristics in other commen-
sal populations must also be considered. Finally, our focus was on the detection of
resistance gene carriage, and we did not assess whether these genes were expressed
in vitro.

In summary, we report long-term erythromycin treatment in adult patients with
bronchiectasis to be associated with limited changes in the composition of the oro-
pharyngeal microbiota, confined to members of the genus Actinomyces. These changes
were, however, modest and limited to shifts in the relative abundances of a discrete
group of bacterial species. Significant increases in within-subject levels of some trans-
missible macrolide resistance genes highlight the potential for the oropharynx to act as
a reservoir for antimicrobial resistance.

MATERIALS AND METHODS
Study design and setting. A detailed description of the BLESS trial (October 2008 to December

2011; Australian New Zealand Clinical Trials Registry ACTRN12608000460303) has been published
previously (4). Subjects with non-cystic fibrosis bronchiectasis were aged 20 to 85 years, had a history of
2 or more infective exacerbations in the preceding year, and had been clinically stable (no symptoms of
exacerbation or requirement for supplemental antibiotic therapy) for 4 weeks prior to enrollment.
Patients were randomized to 48 weeks of twice-daily oral doses of 400 mg erythromycin ethylsuccinate
or placebo.

Paired samples were available from 43 and 41 patients from the treatment and placebo groups,
respectively. Baseline characteristics of the 84 BLESS subjects for whom samples were available did not
differ significantly from those of the 117 subjects of the original BLESS trial (see Table S1 in the
supplemental material). The baseline characteristics of the members of the treatment and control
subgroups were also comparable between this study and the BLESS trial. Significant intergroup differ-
ences were observed only in the use of inhaled short-acting �-agonists (SABA) (58% of subjects receiving
erythromycin versus 29% of subjects receiving placebo, P � 0.017) in this study (Table 3).

Sample collection. Oropharyngeal swabs were collected at baseline and at study completion (trial
week 48). Samples were obtained by means of a swab pressed over the tonsils and posterior pharyngeal
wall, avoiding jaws, teeth, and gingiva on withdrawal. Sample collection was performed when partici-
pants visited the center, and samples were stored in STGG (skim milk, tryptone, glucose, glycerin)
medium (43) at �80°C prior to analysis.

DNA extraction, 16S rRNA gene amplicon sequencing, and bioinformatics processing. Swabs
were subjected to vortex mixing in the collection medium for 30 s, and bacterial cells were pelleted by
centrifugation at 13,000 � g for 10 min. Cell pellets were subjected to bead beating (silica/zirconium [1:1
ratio of 0.1 and 1.0 �M] and chrome beads) (Daintree Scientific, Tasmania, Australia) with a FastPrep-24
instrument at 6.5 m/s for 1 min, followed by incubation for 1 h at 37°C in 2.9 mg/ml lysozyme and
0.14 mg/ml lysostaphin (Sigma-Aldrich, St. Louis, MO, USA). DNA extraction was performed using a
GenElute Bacterial Genomic DNA kit, in accordance with the instructions of the manufacturer (Sigma-
Aldrich, St. Louis, MO, USA).

V1-V3 region 16S rRNA gene amplicon sequencing was performed on an Illumina MiSeq platform at
the South Australian Health and Medical Research Institute, as described previously (22). Details of library
preparation and sequencing are provided in Text S1 in the supplemental material. Sample processing
and analysis were performed using a methodology designed for low-biomass contexts (43). Operational
taxonomic unit (OTU) assignment was performed using an open reference approach with the UCLUST
algorithm based on 97% similarity to the SILVA reference database (version 111). Prior to OTU assign-
ment, sequences with less than 80% similarity to sequences in the reference databases were discarded.
Following the removal of spurious operational taxonomic units (OTUs) such as those assigned as
mitochondria and chloroplasts, sequence data were subsampled to 6,953 reads, providing an average
level of Good’s coverage of 98.3%. OTUs with �10 reads across the sample cohort were removed. Two
samples from the placebo group and two samples from the erythromycin group failed to reach quality
thresholds (specifically, they showed low microbial richness and diversity, suggesting contamination by
sputum) and were removed.

Multiplex PCR for antibiotic resistance genes. Carriage of erm(A), erm(B), erm(C), erm(F), msrA, and
mef genes was assessed by single or multiplex PCR (Table S2), as described in Text S1. DNA bands were
visualized on a 2.5% agarose gel on a GeneGenius bioimaging system (Syngene, Frederick, MD, USA).
Assay specificity was confirmed by Sanger sequencing.
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Quantitation of bacterial load, resistance gene carriage, and specific bacterial taxa. A quanti-
tative PCR (qPCR) assay targeting the 16S rRNA gene was used to assess total bacterial load (44). Levels
of erm(B) (45) and erm(F) (46) were assessed with SYBR green assays, and levels of the mef gene were
assessed with the TaqMan assay (47), using primers described in Table S2. Assessment of the abundances
of specific bacterial taxa was performed using SYBR green and TaqMan qPCR assays (Table S3), as
detailed in Text S1. ΔCT values are based on differences in CT values between the target gene and
reference (16S rRNA) gene.

Statistical analysis. Alpha diversity measures (taxon richness [observed species], Simpson’s index
[one-dimensional {1-D}], Shannon diversity, and Faith’s phylogenetic diversity) were computed in QIIME
(v1.8.0). Multivariate statistical analysis of 16S rRNA gene profiles was performed using primer 6 software
(Primer-E Ltd., Plymouth, United Kingdom). Beta diversity was assessed using a Bray-Curtis distance
matrix based on standardized data. Sample distances were visualized by nonmetric multidimensional
scaling (NMDS) (48). Taxa that were present (prevalence) in at least 90% of the population at a relative
abundance of greater than 0.1% were defined as members of the core microbiome of the oropharynx.
Fold change in OTU relative abundance between groups and time points was determined using R
DESEQ2 statistical software (49) within the phyloseq package (50), with the Benjamini-Hochberg false-
discovery-rate (FDR) correction for multiple comparisons. Identification of significant OTUs was based on
the closest taxonomic assignment as assessed using the Ribosomal Database project (RDP; release 11)
based on the sequence match S_ab score (51). Further phylogenetic analysis of 16S rRNA gene
sequences was performed using ARB software (52). Phylotypes were added to the SILVA phylogenetic
tree using the parsimony method, preserving the overall tree topology, and annotations were performed
using interactive tree of life (iTOL) software (53).

Accession number(s). Sequencing data were deposited in the public SRA database (accession no.
PRJNA379755).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00103-18.

TABLE 3 Characteristics of study populationa

Characteristic

Values

P valuePlacebo (n � 41) Erythromycin (n � 43)

Age (yrs), median (IQR) 65 (61–70) 63 (57–67) 0.064
Females, n (%) 22 (53) 25 (58) 0.826
Duration of bronchiectasis in yrs, median (IQR) 50 (13–60) 50 (23–60) 0.764

Pulmonary function, mean (SD)
Prebronchodilator FEV1 (liters) 1.83 (�0.61) 1.87 (�0.62) 0.911
Prebronchodilator FEV1 (% predicted) 71.1 (�18.8) 66.5 (�16.8) 0.336
Postbronchodilator FEV1 (liters) 1.93 (�0.63) 1.97 (�0.65) 0.967
Postbronchodilator FEV1 (% predicted) 75.2 (�19.7) 70.1 (�17.3) 0.261

24-h sputum wt (g), median (IQR) 17.8 (12.1–26) 19.9 (10.9–23.9) 0.610
St. George’s respiratory questionnaire score (total), mean (SD) 37.5 (�15.1) 35.4 (�13.6) 0.618
Leicester cough questionnaire score, mean (SD) 15.2 (�2.86) 15.0 (�2.98) 0.778
6 min walk test (m), median (IQR) 515 (475–575) 512 (487.5–552.5) 0.714
C-reactive protein concentration (mg/liter), median (IQR) 1.9 (0.8–7.3) 3.4 (1.6–9.2) 0.187
Sputum neutrophils (% of nonsquamous cells), median (IQR) 96.0 (91.8–97.1) 97.1 (95.3–98.0) 0.070

Drug treatments, n (%)
Combination (inhaled corticosteroids plus LABA) 13 (31.7) 20 (46.5) 0.169
Inhaled LABA alone 0 (0) 3 (7.3) 0.241
Inhaled SABA alone 12 (29) 24 (58) 0.017b

Inhaled corticosteroids alone 5 (12.2) 4 (9.3) 0.735
Prednisolone 3 (7.3) 0 (0) 0.112
Nebulized saline solution 1 (2.4) 0 (0) 0.488
Inhaled mannitol 0 (0) 1 (2.3) �0.999

Comorbidities, n (%)
Ciliary dysfunction 1 (2.4) 1 (2.3) �0.999
Hypertension 16 (39.0) 11 (25.6) 0.192
Ischemic heart disease 4 (9.8) 3 (7.0) 0.710
Cerebrovascular disease 4 (9.8) 2 (4.7) 0.427
Diabetes mellitus 1 (2.4) 1 (2/3) �0.999

aData represent means � standard deviations (SD), number (percent), or median (IQR) as indicated. P values were calculated using the Mann-Whitney test or Fisher
exact test according to the characteristics of the data distribution. FEV1, forced expiratory volume in 1 s. FEV1 (% predicted), FEV1 as a percentage of the predicted
value; ICS, inhaled corticosteroid; LABA, long-acting �-agonists; SABA, short-acting �-agonists.

bP value of �0.05.
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