Full Citation Details:
A STRATIFIED ARCHAEOLOGICAL SITE ON GREAT GLENNIE ISLAND, BASS STRAIT

Rhys Jones and Jim Allen

'sic tristis adfarus amicos:
quo nos cumque feretmelior fortuna parente,ibimus, o socii comitesque.Nil desperandum Teucro duce et auspice Teucro'

(Horace, Odes I, VII, 24-7)

'Thus he spoke to his disheartened friends:
wherever fortune, who is kinder than a parent,
take us, we shall go comrades and companions.
There is no need to despair under Teucer's leadership and auspices'!

Great Glennie Island, the largest of four islands of the Glennie Group, is situated (lat. 39°55'S; long. 146°14'E) some 7km west of Wilson's Promontory, the southernmost peninsula of the Australian mainland (Fig.1 from Nat. Topog. map ser. 8119).

The island is covered mostly with Poa grass tussock with a few wind-stunted casuarinas and acacias and measures 3km from north to south and has a maximum east to west dimension of about 750m. Nevertheless, it is a high island, rising to almost 100m above sea level in the north and to 136m in the south, with steep rocky cliffs almost entirely encircling it. The exception is a small saddle between the northern and southern headlands, which on its relatively sheltered eastern shore, forms a small embayment lined by granite boulders known locally as 'The Anchorage'. Here Monash University maintain a small shed which runs as an intermittent field station for biological investigations on this island. Near this shed, about 20m from the sea edge, is a small cave in which is deposited a stratified midden.

In 1968, we were informed of this site by Dr Douglas Dorward of the Department of Zoology, Monash University, who for several years had been carrying out ornithological research on the islands of the northern Bass Strait, with special reference to Cape Barren geese. Dorward invited us to accompany him on one of his field

1 Full quote and translation by courtesy of Sarah Forbes, Department of Prehistory and Anthropology, ANU.
Figure 1 The location of Great Glennie Island in Bass Strait
inspections to the island which we did between the 23rd and 25th
July, 1968. Departing from Port Franklin in the 37ft motor
vessel 'Mirra Booka' under the command of Mr R.G. Truscott, we
proceeded sedately all day along the sheltered eastern shore of
Wilson's Promontory and anchored in Waterloo Bay. The following
morning, with a forecast of potentially heavy weather coming up
from the southwest, we rounded South East Point with its light-
house perched high above the sea-smoothed granite cliffs and
ploughed into heavy steep seas. The cold front had moved faster
than anticipated and so as the 'Mirra Booka' piled bluntly down
the sliding walls of the 8m swell, the wind began to rise past
force 7 and caused us, like so many before us to turn and seek
refuge in the lee of the Cape, back once more in the quiet waters
of Waterloo Bay. Here we stayed for a day as the storm, rising
briefly to force 10 winds, wreaked its fury on the cliffs outside.

We took the opportunity to stroll along the shores of the bay
and observed some of the archaeological features. On the southern
foreshore, erosion in the bank behind the beach revealed lenses
of shell midden - the prominent species being the rock coast
gastropods, Cellana, Subminella undulata and Dicathais textilosa,
with a few Notohalotis ruber. These sites probably included the
W.P.E.1 site referred to briefly by Coutts (1970:16 and fig.2).
In the dense tea-tree scrub behind these sites, some 20 to 30m
from the shore edge, are a series of small platforms cut into the
slope. Fragments of brick and pottery, together with small
vegetated mounds which may be the remains of wall footings or
other features, indicate an European origin, and it is highly
likely that these are the remains of an early 19th century sealing
settlement. Overlooking the northern end of Waterloo Bay where
the beach tapers out against rocks, there is a small rock shelter
about 10m above the foreshore. The rock itself is granite and the
floor of the shelter consists of a loose earthy midden, perhaps
some 20cm deep, the shells consisting of Cellana, Subminella and
Dicathais. This site corresponds with the general location of
Coutts' W.P.E.2 (1970:fig.2) though it is a different site
(Coutts 1967:appendix xvii).

The following day, the 25th, with the weather abating somewhat,
we decided to go to the weather side of the Promontory and see
what the situation looked like and whether or not a landing on
Great Glennie might be possible. Dorward wanted to monitor some
instruments and so even a few minutes ashore would be worth
attempting. Rounding the Cape once more, the journey was
boisterous but feasible and so we proceeded into a world of rolling
seas and seals, with albatrosses skimming the wave tops with their
drooping narrow wings. The stacks and islands all around us were
for the most part engirdled by great cliffs, which plunged
precipitously down to depths of 25 fathoms (45m) and more onto
the floor of the Bassian Plain (Fig.1 and Jennings 1959). The
40 fathom (73m) bathymetre corresponds to the base of the cliffs
on the western shores of the Glennie Islands, some of the Anser
Group and Rodondo Island (Fig.1), showing that during substantial
parts of the last glacial low sea period, the western edge of the
continental coastline was formed by these same cliffs. Indeed,
during the late glacial sea level rise, Rodondo was cut off from
the Australian continent several hundred or even a thousand years before Tasmania (Jones 1968:Fig.3). This latter event took place somewhere to the east of Rodondo showing that the present political boundary between Tasmania and Victoria only 7km south of Wilson's Promontory, despite the efforts of Governor Latrobe to shift it southwards (Stephen Murray-Smith pers. comm.), makes good sense from a prehistoric and biogeographical point of view (Ridpath and Moreau 1966; Hope 1974). The eventual isolation of Great Glennie Island was however a Victorian problem, since this occurred with a sea level rise from -25 to -20 fathoms (45-37m), about 10-11,000 years ago, sometime between the time of isolation of King Island and of the Furneaux Group respectively from Tasmania. The proximity of the small islands and rocks of the Anser, Glennie and neighbouring groups to the Australian mainland must not obscure the fact that their late glacial formation ranks in time scale with those of the major islands of the Bassian Bridge.

George Bass, perhaps being closer to the truth than he realised, said of Wilson's Promontory that 'the firmness and durability of its structure make it worthy of being...the boundary point of a large strait, and a corner stone to the new continent' (Flinders 1814:cxv).

Approaching the relative shelter of the eastern shore of Great Glennie Island, we landed at the 'Anchorage' and our skipper gave us all a strict time limit of about 10 minutes ashore since he was worried about approaching weather on this windward side of the Promontory. While Dorward and his biological assistants went to their shed, we ran over the boulders to the potential archaeological site (Fig.1), a second's observation confirming that indeed it was one.

The 'Glennie Island Cave' (GGI/1) as we propose to call it, consists of a cave – perhaps an old sea cave or a widened crevice in a coarse-grained pink granite. From in front, the cave appears like an old-fashioned coal skuttle with a semi-circular mouth some 1.5m high and 3.7m wide, extending into the rock a distance of 5.5m, the apex of its roof being some 6m above high tide mark. The floor of the cave is soft and consists of a matrix of coarse granite grains from the roof in which are embedded enough shells to form a dense midden. The vast majority of the sea shells are limpets of Cellana solid a (Macpherson and Gabriel 1962). At least one Sublittorina undulata was seen on the surface as were a few mussels (Mytilus). The limpets were large, a sample of 13 shells examined giving a maximum length of 5.41 ± 0.86cm, with a height (from the plane of the shell rim to its apex) of 2.37 ± 0.33cm. Similar large specimens were seen adhering just below water to the granite boulders near the anchorage. The surface of the midden had many bones scattered on it. We collected a small representative sample, the bulk of which was bird.¹ There were leg and wing bones of Mutton Bird (Puffinus tenuirostris) and of Penguin Eudyptala cf. minor). Since both of these birds sometimes nest or shelter in caves and rocky crevices, their presence here

¹ Analysed by Ken Aplin, August 1979.
does not of necessity prove that they were brought and eaten by man, though the broken nature of the bones suggests this was possible. However, there were also some broken bones including phalanges and a proximal piece of left ulna of fur seal *Arctocephalus* sp. and at least one canine of a fish which implies human action. On the midden surface we found one stone of milky quartz, (wt. 38gm, l. = 8.5cm) which is exotic to the immediate site and probably to the entire island. This stone shows signs consistent with it having been worked.

At the cave mouth, which faces a generally northwesterly direction, the midden seems to be held up on its northern or downslope side by a large rock. A crack between it and the northern bed-rock wall showed midden and coarse granite sand descending to a depth of 4m down to the beach. Whether this is an indication of the maximum depth of the deposit or merely spillage down the natural hill slope is not known, although we suspect the latter. The limpet shells on the midden surface seemed slightly 'chalky', indicating an antiquity at least consistent with the beginning of the last century when the last Aborigines used the resources of the Promontory (Coutts 1970). A sample has recently been submitted to the ANU Radiocarbon Laboratory for dating. This will give a date for the final occupation by Aborigines of this cave. Nowadays, it is also used as an *ad hoc* store cave by Europeans.

A blast on the boat's hooter brought us all back on board in a hurry, and there was time only for a few photographs. A long but uneventful journey took us back to Port Franklin in the middle of the night.

Discussion

The narrative form of this paper serves to emphasise what a difficult and dangerous place Great Glennie Island is to get to, even with modern technology. The minimum distance to Wilson's Promontory is 7km, but this is to the 40m perpendicular cliffs of Oberon Point (Fig.1). The only feasible landing or embarking places on the west coast of the Promontory opposite the island group are the beaches of Oberon Bay, Norman Bay at Tidal River or Squeaky Beach to the north (Fig.1). In all cases, the minimum open sea distance to the anchorage on the island is 9km. One of us (Jones 1976, 1977:326-29) has shown that in western and southern Tasmania there was an inverse relationship between the intensity of use of an offshore island and the minimum cross-sea distance required to reach it. Distances greater than about 4km limited any such crossings to those of specialised groups seeking exceptionally rich seasonal resources such as seals or mutton birds. Even journeys less than this but which were exposed to difficult currents or uncertain weather conditions such as the 3km gap between Hunter Island and Steep Head were not attempted, despite ample potential food reward to any successful navigator (Jones and Allen 1978). The longest journeys which were undertaken involved single crossings of up to 7km, although by leapfrogging from island to island, people were able to get out
Figure 2: Photograph by Howitt of a canoe used by Gippsland Kurnai people
to Three Hummock Island, and Maatsuyker, (10km and 11km respectively from the Tasmanian mainland) (Jones 1976:252, 1977:327; Vanderwal 1978:119). The latter voyages mark not only 'the most southerly penetration of prehistoric man in Australia' but they also 'rank high in the maritime achievements of any hunting and gathering society' (Jones 1976:253). However, in terms of minimum sea distances, exposure to the southwesterly swell, treacherous weather, current and refraction effects as the swell meets the land and a largely iron-bound coast to the lee, the 9km journeys made by the Wilson's Promontory Aborigines to Great Glennie Island must equal the feats of their distant cousins on the other side of Bass Strait.

Tasmanian watercraft, consisting usually of rolls of paper-bark (Melaleuca) were basically canoe-shaped rafts, which until waterlogged, were able to float over quite rough water. Because of their weight and bulk and because the Tasmanian Aborigines used only a long pole and not paddles to propel them, they had little capacity to make headway against wind or current. The watercraft of the coastal Aborigines of eastern Victoria were designed on a different principle, being fixed-walled displacement vessels made from a sheet of Eucalyptus bark, bent and turned inside out, with the ends tied to form a bow and stern (Brough Smyth 1878 (vol.1):453-55; Coutts 1970:128). A photograph (Fig.2) by Howitt (1904 (fig.24):424) of one of these canoes used by the Gippsland Kurnai tribes to whom the Brataualung Aborigines of Wilson's Promontory belonged, shows what slight craft these were, and how vulnerable they must have been to rough water. Even a small wave could cause them to ship water, and thus, having no buoyancy of their own, instantly to sink.

This type of watercraft was also found on the New South Wales coast at least as far north as Sydney. The Brataualung used these canoes to fish in the sheltered lagoons to the east of the Promontory near present-day Port Albert. Sometimes they also travelled during fine weather from the Gippsland coast at Port Welshpool across the mouth of Corner Inlet via Snake Island to Singapore Peninsula, on the northeast of the Promontory involving a 2km open-water crossing, and then close to the sheltered east coast until they were opposite Rabbit Island with its mutton bird rookeries, which could be reached in some tide conditions by a sea journey of a few hundred metres (Howitt, unpublished MSS quoted by Coutts 1970:128). There are no ethnographic accounts of the use of these watercraft on the exposed western coastline of the Promontory, and the archaeological data from the Glennie Island Cave constitute the first evidence of journeys in these much more dangerous waters. Indeed they indicate a maritime capacity for such craft an order of magnitude greater than hitherto suspected. It is of interest that the shortest journey from the South Australian mainland to Kangaroo Island is 14.5km and should, in some weather conditions, be within the capacity of the kind of watercraft that took people 9km from Wilson's Promontory to Great Glennie Island. Whether or not the people of Kangaroo Island and of the adjacent mainland were totally isolated from each other during the millennia following the formation of that island during the post glacial sea level rise has been debated by Lampert.
(1977) and Jones (1977). The result has considerable theoretical interest for the question of the genetic and cultural survival of small groups over long periods of time. One last point is that Coutts (1970:127-8) in his ethnographic and archaeological work on the Promontory could find no direct evidence for Aborigines exploiting seals, though he suspected that they did. The Glennie Island Cave midden may provide such direct data.

We think Great Glennie Island was visited occasionally during prehistoric times by Aborigines from the adjacent Promontory. An obvious time of year would have been late summer, when seals and mutton birds would have been on the island, and when there are often periods of calm weather, so that for a brief period even the seas west of the Promontory appear glass-like from the hills above.

Retrospect and prospect

This work, a piece of opportunistic serendipity, might today seem to be lacking the systematic research rigour so beloved of the priests of the scientific method and of third-year undergraduates. In these days of growing bureaucratic controls it might even be illegal. Yet the brief experience was so vivid as to inspire one paper on Bass Strait (Jones 1969) and helped to initiate a series of others on Tasmanian watercraft capacities (Jones 1976, 1977). At that time the Glennie Island Cave was the second stratified prehistoric site ever found on a Bass Strait Island, the other being Meston's discovery (1936) of what later became known as 'Cave Bay Cave' on Hunter Island (Bowdler 1974). Since then, such sites have been found on Erith, Flinders, King and Three Hummock Islands, leading the way towards potentially fundamental information concerning both the behaviour of small groups of people faced with the awesome fate of a rising sea; and also the general question of the relationship between technology, resources and danger within the context of maritime hunting and gathering economic systems.

As a small element within this larger endeavour, we feel that a restrained investigation of the midden in the Glennie Island Cave would be of considerable interest. This paper is a first step in the path which, hopefully, will lead us back to the Glennies in early 1980.

Acknowledgements

Without Doug Dorward's alertness in recognising the potential importance of the Glennie Island Cave, and his generosity in informing us and inviting us on his field visit, this work would not have been done. It is to him that the credit is due for the discovery of this site. Jane Lennon's enthusiasm prompted us at last to go back to half forgotten notes and prepare this paper. Nic Green drew the map in Figure 1 and measured the limpets.
Ken Aplin identified the bone fragments. Sarah Forbes brushed some dust off her poetry books and added a bit of class to the classical quote.

Photographs of the cave are held in the Department of Prehistory Archives (Jones, R.), as are other materials until lodged with the relevant Victorian State repository.

Department of Prehistory
ANU, Canberra

References

Coutts, P.J.F. 1967 The archaeology of Wilson's Promontory. MA thesis, Australian National University, Canberra

Flinders, Mathew 1814 A Voyage to Terra Australis...vol.1. London

Howitt, A.W. 1904 The Native Tribes of South Eastern Australia. London

Archived at Flinders University: dspace.flinders.edu.au

