Show simple item record

dc.contributor.authorFallahnezhad, Khosro
dc.contributor.authorFarhoudi, Hamidreza
dc.contributor.authorOskouei, Reza H
dc.contributor.authorTaylor, Mark
dc.date.accessioned2017-10-09T21:54:47Z
dc.date.available2017-10-09T21:54:47Z
dc.date.issued2017-09-07
dc.identifier.citationFallahnezhad, K., Farhoudi, H., Oskouei, R. H., & Taylor, M. (2018). A finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: Part 2. Journal of the Mechanical Behavior of Biomedical Materials, 77, 164–170. https://doi.org/10.1016/j.jmbbm.2017.08.038en
dc.identifier.issn1751-6161
dc.identifier.urihttp://hdl.handle.net/2328/37527
dc.descriptionThis manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 24 month embargo from date of publication (Sept 2017) in accordance with the publisher’s archiving policyen
dc.description.abstractA finite element model was developed to investigate the effect of loading regimes caused by various daily activities on the mechanical behaviour of the head-neck taper junction in modular hip replacements. The activities included stair up, stair down, sit to stand, stand to sit, one leg standing and knee bending. To present the real mechanical environment of the junction, in addition to the force components, the frictional moments produced by the frictional sliding of the head and cup were applied to a CoCr/CoCr junction having a 12/14 taper with a proximal mismatch angle of 0.024°. This study revealed that stair up with the highest fretting work per unit of length (1.62 × 104 J/m) was the most critical activity, while knee bending and stand to sit with 1.96 × 103 J/m were the least critical activities. For all the activities, the superolateral region of the neck was identified as the most critical region in terms of having larger values of fretting work per unit of area. This study showed also that the relative micro-motions and contact stresses occurring at the head-neck interface for all the studied activities are mostly in the range of 0–38 µm and 0–350 MPa, respectively. These ranges may be accordingly employed for conducting relevant in-vitro tests to more realistically represent the mechanical environment of taper junctions with the same materials and geometry studied in this work.en
dc.language.isoen
dc.publisherElsevieren
dc.rights© 2017 Elsevieren
dc.subjectCoCrMo implantsen
dc.subjectTaper junctionen
dc.subjectDaily activitiesen
dc.subjectFrettingen
dc.subjectFinite element analysisen
dc.titleA finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: Part 2en
dc.typeArticleen
dc.identifier.doihttps://doi.org/10.1016/j.jmbbm.2017.08.038en
dc.rights.holderElsevieren
local.contributor.authorOrcidLookupTaylor, Mark: https://orcid.org/0000-0001-7842-6472en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record